GBS Software Architecture

Version 2.1

February 3, 1997

CDRL SEQUENCE NO. A004

Sponsored by:

Defense Advanced Research Projects Agency
Information Systems Office
DARPA Order No. E456
Issued by DARPA/CMO under Contract MDA972-96-C-0025

Prepared by:

Welkin Associates, Ltd.
Suite 410
10300 Eaton Place
Fairfax, Virginia 22030
(703) 691-4616

DTIC QUALITY TREPECTED &

| for public release
\ Approved o ;Unﬁnﬁted

Distributi

~

Form Approved
REPORT DOCUMENTATION PAGE OMB No. 07040186

Publs repartiag burden for Wiiz collaction of information iz estimstad to avaraga hour pat rasponse. including the time for ravigwing instruzions, agarching axiating data souices. gaihar:ng And maintaining the dats nraded. and complsung and raviawing
tha callaztion of | Send gnding his bucdan estimate or any ather s2pect of thir callaction af information. including suggeations Tor raducing thiz burdan_ to Washington Headquatars Shnvices. Diectarate fof Information
Qperations eng Reperts. 1215 Jofforson Davis Highwsy, Sute 1204, Adington. VA 222024902, and t the Offica of Mansgdnient and Budget, Peparwerk Reduction Projact (0703.019), Washington, OC 20603,

1. AGENCY USE ONLY fLesve bionk) 2. REPORT DATYE 3. REPORT TYPE AND DATES COVERED

3 February 1997 Final Report
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
GBS Software Architecture Design Document, Version 2.1 MDA972-96-C-0025

6. AUTHOR(S)
M. Snellings, M. Giboney, K. Dezell, J. Nyikos

7. PERFORMING ORGANIZATION NAME(S] AND ADDRESSIES) 8. PERFORMING ORGARIZATION
Welkin Associates Ltd. REPORT NUMBER
10300 Eaton Place Suite 410

. 0025-CDRL-004
Fairfax, Va. 22030
9, SPONSORING/MONITORING AGENCY NAMEIS) AND ADDRESS(ES) 0. SPONSORING/MONITORING
Defense Advanced Research Projects Agency AGENCY REPORT NUMBER
Information Systems Office
3701 North Fairfax Drive
Arlington, Va 22203-1714
11. SUPPLEMENTARY NOTES
None
128. DISTRIBUTION AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Unlimited

13. ABSTRACT Maxmum 200 words)

This document describes the software architecrure for Version 2.1 of the Global Broadcast Service (GBS). This architecture
only addresses the transmission and receipt of file, stream, and status data which comprises a subset of the channels
broadcast over the GBS system. Throughout the remainder of this document, the terms ‘GBS’ and ‘GBS system’ are used 10
mean the portion of the GBS broadcast which transmits file, stream, and status data.

14. SUBJECT TERMS 5. NUMBER OF PAGES
GBS Software Architecture Version 2.1 51
16. PRICE CODE
N/A
17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF
OF REPORT OF THIS PAGE OF ABSTRACT ABSTRACT
Unclassified Unclassified Unclassified UL

Standard Form 298 {Rev. 2:89) (EG)
ad ke AMCIH Con 100 VD

Prawesi

Table of Contents

1. OVEIVIBW ...ttt eens s s et eeerrrenne 3
1.1 G10bal BrOadCast SEIVICEu.uvvvvvuuuurmeriveeeeeeneeeessssnneesssssasseseeeeesesssesees oo eees oo 3

1.2 Joint BroadCast SEIVICevvvuuuuuiiuueceeeneeesessissnsssesseeooseseseseeessese e oeoooeoooeooeoeooooooo 3

1.3 DOCUMENT OVEIVIEW....ccorvvvvvvvvnireesesicooceeeoeeassnssesssesessesssse e seesssss e oo 3

1.4 Additional Supporting DOCUMENLScceeuvvereeemmmmrmreeseesseeeeeeeeesesse e 3

2. SOftware ArchiteCtUure ...ttt esee e s see s 4
2.1 General CONfIGUTALION ...vv.c.uueveveeeesicceeeeonecasseeeessseeensessesses s eeeeesseseee e ooooooeoeeoeeoeeoe 4
2.1.1 GBS DII€COrY SIUCIUTE w....ovvveeoreveeceeerreereensessnesesssseeesesesesseeeesessssseesessssossoeooeooeoooooooeeooee . 5

2. 1.2 File WEADPET....o.oevivessiiinertteseteects et eeseeeeess s oooeoesoooessosoe . 9

213 GBSID ..ottt ettt et ssa e eeeoeeeeeees oo 10

2.1.4 DESHINAON FlE wovuounrieeoviereitencceeecese e eeeisse et essesss et ooeooeoeeeeoeeeeo oo 10

2.1.5 DEStNALION GIOUPS......vveevrvveeecceeenieeeeessesssesssssesssssesseaeesesssessseseses s seseoessseoeeoeoseooee .. 11

2.1.6 GBS File TYPES woovuoreeveiiiivecsascecencceesecsssesesssssessse e sesseesesss s ooeeeeeseeneeeeooeen 11

2. 1.7 KEYWOIA File...ouuuireeisniisirrsiti oot eessss et ssee s s oo eoee oo eoeoooeoeeeee oo 11

2.1.8 Process Management..................cuueueeereesmeessmmssssnesssesesesesseseessssssessss oo oo oeoooseooeeosee 11

2.2 GBS Data SOUICE......ovvcvvvveurmmnrsseeasssiseseeesssesessssesassssonsessesssss s sesesssessseseeseseeseosessesesoeseesese oo 14
2.2.1 Simplified Data SOUICEe.eeeerceeeennresneeaeseesseeseseeeeeseseeeseeseesesooeeess oo ooooeoooeoeeoee . 16

2.3 Broadcast Management Center (BMC)vvueurereemmeeseeeeeseseeeesoeeeoosoeoooooooooooooooooooooe 16
2.3 T GABWAY ...t seessssscrais s ssss s oo s oseeoseseeeeeee oo 16

2.3.2 QUEUE MANAZETcovvviivorniinrianieeeceieesecesseesss s seeese s s s e oo oeeeeeseoeeoooeo e 17

2.3.3 BroadCast STAMUScvvvuueivvessiceeeaeeseesseessssessessssssssseseseesesses e sees s s s oo eooeoeeseooe . 18

2.3.4 Broadcast STeam Dataccueuceeeueeermreesseenessssesseeseesseesesssssesesooeseseooooeoeoooooeooeeeooee 19

2.3.5 Crypto SYNCAIONIZAtON. «......voeevveeeeeeceee et 21

2.4 GBS RECEIVE «...ovevvvivaaisiitis ittt s e eeoeee . 21
2.4.1 File RECEIPt AN STOTAZE....vvv.vvevoereeeereeesnneeesssseneeessessseeeseeeeeeseesesese e eesesoeseeeoesoeee 22

2.4.2 Receive Broadast SLAtlScccereremmemmvsunessanseseseoeseessesessesssssosesseoooooooeooooooooeooeeeooee 24

2.4.3 ReCeive SIeam Datacu.ceuereeeriereeasene oo eeeeeseeeeeeeseesesesesesseeeeooeeooeooooooeeoseeeseooee 25

2.4.4 File MANAGEMENT.........veooeoveeeoiceeenccveaesessesesssn s essssseoeeeeseess s seees e oooeooooeesee oo 26

2145 EXCCULIVE ..ottt it sss st ee oo eeoeeeeoe s 30
Appendix A GBS Programs............ C et e e e e e a s nens 31
Appendix B GBS Shell SCHIPLS......ccoveeevueccirisseeeeneeeeesesseessess e s sssss 35
Appendix C Generic Configuration Parameters............ sssstriessnssesesssssatisesenenns 37
Appendix D Executive Configuration File.................. sarttnnenentananr e aaeeaa—a_. 40
GBS Software Architecture: Version 2.1 (February 3, 1997) Page 2

1. Overview

1.1 Global Broadcast Service

The Global Broadcast Service (GBS) seeks to take advantage of commercial communications technology
to provide intelligence data to the intelligence consumer in a timely fashion. It is important to note that
GBS itself is NOT an intelligence system, but the mechanism to provide intelligence information to other
users, either human or intelligence exploitation systems. Of particular importance is the fact that GBS can
provide LARGE amounts of audio, video, and data, up to 23 Mbps, to locations which previously could not
receive such information due to physical or bandwidth constraints. This large bandwidth can be achieved at
a fraction of the cost of custom built communications system with a minimal set of hardware. High
bandwidth with minimal hardware constraints opens the door for providing intelligence information to the
warfighter in the lower echelons. It also means that intelligence such as video and imagery which may
have been previously unavailable to the warfighter may now be provided.

1.2 Joint Broadcast Service

The Joint Broadcast Service (JBS) is a fielded operational version of the GBS system which supports
Operation Joint Endeavor. JBS is a video and data delivery service for theater requested information
provided by numerous in-theater and CONUS sources.

The Joint Information Management Center (JIMC), located at the Pentagon, coordinates the data broadcast
by JBS. JBS uses a leased Orion 1 satellite transponder to broadcast a 23 Mbps data stream containing
several audio/video channels (CNN Headline News, Armed Forces Radio Television System (AFRTS), and
UAYV video) and several data channels (IP US Secret data, IP NATO data, ATM US Secret data, ATM
NATO data). The data products are transmitted from Washington, D.C. to the high-powered tranponder on
the Orion satellite for relay to NATO and IFOR forces deployed over a large geographic area (including
Bosnia, Italy, Germany, Hungary, Belgium, England, and several ship based systems).

1.3 Document Overview

This document describes the software architecture for Version 2.1 of the Global Broadcast Service (GBS).
This architecture only addresses the transmission and receipt of file, stream, and status data which
comprises a subset of the channels broadcast over the GBS system. Throughout the remainder of this
document, the terms ‘GBS’ and ‘GBS system’ are used to mean the portion of the GBS broadcast which
transmits file, stream, and status data.

Readers of this document should acquire a high level understanding of the software as well as specific
details required for troubleshooting and maintaining the GBS system. The history of the GBS software
releases to date are described below:

Version 1.01 - First deployed JBS release (March 1996)

Version 1.06 - IBS software upgrade to fix bugs and add minor features (June 96)
Version 2.03 - JWID 96 release (Aug 96) (deployed in CONUS only)

Version 1.07 - JBS ATM deployment release (Sept 96)

Version 2.1 - JBS software upgrade (Jan 97)

1.4 Additional Supporting Documents

The following documents may provide additional information:

GBS Software Architecture: Version 2.1 (February 3, 1997) Page 3

GBS Version 2.1 Receive System Training and User’s Manual
GBS Version 2.1 Release Notes

GBS Software Installation Instructions

MTN Queue Manager Reference Manual

GBS File Wrapper Version 3.0

2. Software Architecture

There are three basic architectural components of the GBS system. The first is the GBS data source which
is a provider of the data files to be included in the broadcast. The second is the broadcast management
center (BMC) which takes data files from the source and includes them in the broadcast uplink. The third
component of GBS is the receive site where data from the broadcast is accepted and processed. Figure 1
High Level GBS Architecture shows the basic GBS architecture for data file processing.

Data Sources
JIMC, METOC, ...

BMC
Gateway

BMC BMC
IP Queuc Manager ATM Queue Manager

T~

NOMAD Watch seai-{
CNN Headline News mesegine)

Receive Site
Data Management

Figure 1 High Level GBS Architecture

The GBS hardware configuration supports both IP and ATM protocols. These protocols define the physical
connectivity between the BMC workstation and satellite transmitter, and the satellite receiver and Receive
workstation. The data broadcast over each channel (e.g., ATM US Secret data) uses a single protocol; the
channel includes file, stream, and status data combined in single data channel. The software used to support
the IP and ATM transport protocols is identical, with several run time configuration file differences. Except
for the transport programs that directly inject data into and retrieve data from the broadcast (the same
programs use different protocols based on a run time parameter), the GBS system is independent of the
transport protocol. Therefore, this document is applicable to both an IP and ATM, with the few protocol
specific differences noted.

2.1 General Configuration

This section describes portions of the GBS software architecture that are common across the three major
architectural areas.

GBS Software Architecture: Version 2.1 (February 3, 1997) Page 4

2.1.1 GBS Directory Structure

GBS relies on a pre-defined directory structure. This directory structure is created when the software is
installed and the root of this structure is referred to as $GBS_HOME for the remainder of this document.
The directory structure contains the GBS software executables, configuration files, data files, logs which
show the status of the system, and files which are used internally by the system. The GBS software
accesses programs, configuration files, and data files through both the environment variable $GBS_ HOME
and the directory /home/GBS (which is normally managed by the automounter daemon) - these two should
always refer to the same physical point in the filesystem. Table 1 GBS Directory Structure shows the
directory structure and how the directories are used in the three major architectural areas of the system.

This table uses the symbol ¥ to indicate that the directory is used by the specified architectural
component; the symbol ¥ is used when the architectural component does not use the directory.

Table 1 GBS Directory Structure

Directory under $GBS_HOME and Purpose Source BMC | Receive

app-defaults x x v
Contains X Windows application default files (the XAPPLRESDIR
environment variable points to this directory). All GBS programs
(located in the $GBS_HOME/bin directory) use the application default
file named GBS to set their X Windows resources. This directory could
contain other application default files (e.g., for the Matrix application).

applinks x x v
Ties applications used to analyze files received over the broadcast to file
extensions and file types through the use of symbolic links. This is
analogous to setting mime types in the mailcap file.

apps x x v
Scripts that initialize an environment and then starts a data exploitation
application (usually located in /home/gbsapps or /opt).

bin . v v
GBS developed programs

comms v v
Files for named pipes (UNIX sockets) used for inter-process

communication

config v v
Run time configuration files

customFiles v Y

Used only during software installation; files from this directory are
copied to other locations. Customization files are included for Netscape
and http.

data x x v
Files received over the broadcast are saved under this directory, normally
in a subdirectory which is named to indicate the type of data.

email x x x
Previously used to support file submission through email; this feature
may be re-enabled in a future release.

header . x x
Top level directory not explicitly used
header/current x x

Wrappers of each file received over the broadcast. Wrappers are deleted
when the corresponding Data Manager record is removed.

GBS Software Architecture: Version 2.1 (February 3, 1997) Page 5

Directory under SGBS_HOME and Purpose

Source

BMC

Receive

header/dat

Contains data files used by the Data Manager. The Data Manager
accesses these files through mmap(), so they must be physically located
on the machine where dmServer runs.

x

v

header/discard
No longer used

header/error

Wrappers of files that were received over the broadcast but could not be
registered with the Data Manager (for some reason other than the
connection between dispose and dmServer was down).

header/new

Top level directory not explicitly used.

File wrappers are temporarily stored under this directory if dispose
cannot communicate with the Data Manager. As soon as this
communication path is re-established, dispose will register these
wrappers with the Data Manager and then move the wrappers into the
header/current directory.

header/new/deleted

Wrappers of files received over the broadcast and saved but immediately
deleted after processing, so treated as though the file was deleted. This is
only used for system. thl files.

header/new/discarded
Wrappers of files received over the broadcast but not saved.

header/new/error
Wrappers of files that were received over the broadcast which could not
be processed any further.

header/new/saved
Files received over the broadcast and saved.

header/new/tmp

Temporary working directory for the dispose process. This is used to
completely write out a saved file, set the file’s date and access
permissions before the file is moved into the save directory.

help
Contains help files for GUI applications.

lib
Runtime libraries required by the GBS software.

logs
Log files showing status of the system. This is normally a symbolic link
pointing to /var/GBS_logs

logs/THL .
Summary of files sent out over the broadcast in last X minutes where X
is configurable, but set to 15 minutes by default.

must
Location where files wrapped with the must receive flag are saved if they
do not match any of the dispose rules.

oil_user
Contains default user customization files for Oilstock. Used when new
accounts are setup to use GBS.

GBS Software Architecture: Version 2.1 (February 3, 1997)

Page 6

Directory under $§GBS_HOME and Purpose

Source

BMC

Receive

queues/ATM/0-4

queues/IP/0-4

Queued priority directories (5 per queue) containing symbolic links to
wrapped files currently queued for broadcast. The directories correspond
to file priority where 0 is the highest priority (FLASH IMMEDIATE)
and 4 is the lowest (ROUTINE).

X

x

queues/ATM/new

queues/IP/new

A symbolic link to the wrapped file is placed in this directory when a file
is placed into the broadcast queue. The queue manage will move the
symbolic link from the new directory into the proper queued priority
directory. '

rdm_html
No longer used

receive
Top level directory not explicitly used.

receive/.bad_blocks
No longer used

receive/.bad_received

Contains files with named with the GBS ID of files that were not
completely received over the broadcast (only error tolerant files are
represented). Each file is 4 bytes, containing an integer reflecting the
number of missing bytes in the data file. This is used by the transport
programs to attempt to receive the file again if it is re-broadcast.

receive/.dsa_assem
Temporary working directory where files being received over the
broadcast are assembled. ‘

receive/.received

Zero length files named by the GBS ID for files that were successfully
received over the broadcast. This is used to indicate that subsequent
transmissions of this file can be ignored. This directory is automatically
cleaned; files remain for approximately 2 days.

receive/bad_receive

Incomplete wrapped files that have been received over the broadcast are
moved to this directory for dispose after all expected transmissions are
complete. Any files that do not have their error tolerant flag turned on in
the wrapped are immediately discarded.

receive/bad_wrapper
No longer used

receive/corrupt_files
Wrapped files are placed in this directory if dispose is unable to process
the file because it cannot read the wrapper.

receive/error_receive
No longer used

receive/good_receive
Wrapped files are moved to this directory for dispose after they have
been completely received.

receive/retranReq

Zero length files named by the GBS ID for indicating that the file has
been requested for retransmission and therefore should be saved when it
is received (regardless of the dispose rules).

GBS Software Architecture: Version 2.1 (February 3, 1997)

Page 7

Directory under §GBS_HOME and Purpose Source BMC | Receive
rtx x x v
Top level directory not explicitly used.
rtx/autoln % x x
No longer used
rtx/manualln x x x
No longer used
rtx/reqGen x x x
No longer used
rtx/reqGen/reqSend x x x
No longer used
rtx/rexmitDiag x x x
No longer used
scripts v v
GBS scripts much like the bin directory.
skel v
GBS specific environment files used to create new GBS users and to give
existing users access to the GBS System.
status x v x
Contains last status messages sent from the BMC.
system x x v
Received files wrapped with type “system.*” are saved in this directory.
If the file was wrapped with a subtype of system, then the subtype is
converted to a directory where the file will be saved.
tlfDir x v x
Keeps overall summary of files sent out over the broadcast.
unwrapped x v x
Top level directory not explicitly used.
unwrapped/notify x v x
Contains a file that contains a path to the file to be automatically
wrapped. A default wrapper file must also be provided in the same
directory as the file to be wrapped. The default wrapper file must be
called defaults.gbs.
wrapped v v x
Contains wrapped files that will be sent on the broadcast.
On a source system, the files will be sent to the BMC and deleted from
this directory.
At the BMC, these files are included in the broadcast. The directory
needs to be manually cleaned periodically.
wrapped/archive x v x
Contains files that were wrapped with an archival request.
wrapped/errors x v x
Zero length files named by the GBS ID inidicating an error was
encountered in processing the file.
wrapped/notify v v x
Zero length files named by the GBS ID indicating that the corresponding
file in the wrapped directory is complete.
wrapped/reachback x v x
Not used, planned future capability.
wrapped/save x x x

No longer used

GBS Software Architecture: Version 2.1 (February 3, 1997)

Page 8

Directory under $GBS_HOME and Purpose Source BMC | Receive

wrapped/timed/.timed x x x
No longer used
wrapped/timed/replacable x v x

Indicates that a file being scheduled for inclusion into the broadcast can
be replaced by another file.

wrapped/timed/timed x v x
Indicates that a file in wrapped is to be scheduled for inclusion into the
broadcast.

wrapped/transmit x v x
Indicates files in the wrapped directory should be passed to the queue
manager.

wWwW v v v
Top level directory not explicitly used.

www/authdocs) x v x
HTML documents and supporting files such as the password file that
allow wrapping of files through a Web browser.

www/cache x x x
No Longer Used (?)

www/cgi-bin v x v
CGI programs.

Source: used to create Intelink X pages.
Receive: used to support Web based file management and Intelink X.

www/cgi-bin.upload x v x
CGI programs for wrapping files through a Web browser.

www/cgi-bin.upload/template x v %
Template HTML files for wrapping files through a Web browser.

www/Default_Config x x x
No longer used

www/htdocs x x v
HTML home page.

www/images v v v
Images used in HTML pages.

www/orderforms x x v
Location where Intelink X source order pages are saved when received.

www/Upload x v x

Contained directories with IP addresses of the receive station (?)

2.1.2 File Wrapper

Most message passing protocols add control information to the data that is being passed from the originator
to the destination. The type of control information and its use vary depending on the protocol. GBS also
follows this paradigm for the data files that are included in the broadcast. Each data file has a header called
the wrapper added to it prior to the transmission. When received, the wrapper is removed and the file
appears as it did on the send side.

The information within the wrapper is used for several functions. The wrapper information provides
important processing information used by the software during the steps of the broadcast. This information
is typical of most header information found in other message processing protocols in that it may not be of
use to the end user but is instrumental in allowing the software to function correctly. Examples of how the
wrapper fields can be used to affect processing are listed in Table 2 Example Wrapper Fields.

GBS Software Architecture: Version 2.1 (February 3, 1997) Page 9

Table 2 Example Wrapper Fields

Wrapper Field Use

destination Indicates which destinations should receive the file, indirectly specifying which
transport mechanism (IP or ATM) to use when sending the file.
file type Indicates if a particular broadcast address (broadcast or multicast) or VP/VC is to be

used when sending the file. Primary means of filtering and organizing files at the
receive sites.

priority Files with a higher priority are sent over the broadcast before files of lower priority.

size Specifies the number of bytes to be sent and allows the broadcast to know when a
transfer is complete.

At the receive sites, the primary function of the wrapper is to provide the receivers of the files with a means
of determining whether or not that particular receive site wishes to keep or discard the files being received
over the broadcast. A process called dispose compares the contents of each file wrapper against a set of
rules to determine whether the file should be kept and if so where on the disk it should be saved. The
dispose process is discussed in section 2.4.1.

A third use of information from the wrapper is to allow the user to add information to the file, and to give
summary information about the file transfer to the receive sites. By adding fields to the wrapper, the user
is able to convey additional information about the file to the receivers and can specify actions to be taken
during the steps required to broadcast the file.

Another usage of information from the wrapper is to give the user and maintainers of the system valuable
tracking information such as which source sent the file, the date the file was sent, and the GBS gateway
that processed the file.

For more information on the GBS file wrapper see the GBS File Wrapper document.

2.1.3 GBSID

Systems that cause files to be included into the GBS broadcast are called sources. The system that receives
data from the sources and processes them for inclusion into the GBS broadcast is called the GBS gateway.
The GBS gateway can process files from many sources and can itself act as a source. GBS does not
enforce any restrictions on the file management for each source. Therefore, it is possible for two different
sources to send a file with the same name to the GBS gateway for inclusion into the GBS broadcast.

In order to handle files with duplicate names and for internal tracking purposes, each file that is transmitted
over the GBS broadcast is assigned a unique GBS identifier (GBSID). This identifier is made up of two
parts. The first part contains the host name of the computer that is the source of the file (up to the first 8
characters). The second part contains eight characters that represent the hexadecimal representation of a
one up number that is maintained for each source. For example, if a computer at the AIA source has a host
name of “aiaSunWorkstation”, the first file transmitted over the GBS broadcast from AIA would have a
GBSID of aiaSunWo000000000. The second file transmitted from AIA would have a GBSID of
aiaSunWo00000001 etc. Due to the cryptic nature of the GBSID, it is hidden from the end user but can be
useful to maintenance personnel in troubleshooting problems.

2.1.4 Destination File

The file $§GBS_HOME/config/destList contains a list of known locations that are receiving the broadcast.
GBS is a true broadcast system which means that ALL receivers listening to a queue can receive all of the
data that is sent out over that broadcast queue, although some of the data can be filtered at the network
level by not listening to IP multicast channels or ATM VP/VCs. However, destinations that are in the
destination file can be added to a wrapper to give the receive locations a means of looking for specific data

GBS Software Architecture: Version 2.1 (February 3, 1997) Page 10

or screening out data that is of no interest. Again, adding destinations to the wrapper does NOT prevent
the file from being delivered to the destinations that are not specified.

Each destination in the destination file also indicates which queues a file should be broadcast over to reach
the particular destination. GBS version 2.1 automatically adds the destination “ail” to each of the files
wrapped for inclusion in the broadcast. The default destination file specifies that the destination “all” is to
be sent over both the IP and ATM queues. Therefore, by default, GBS version 2.1 sends all files over both
the IP and ATM transport mechanisms. Besides individual sites, groups can also be listed. Each group
listed must also specify one or more queues and the keyword ‘GROUP’.

2.1.5 Destination Groups

The directory $GBS_HOME/config/group contains files which group destinations from the destList file
into groups. The purpose for groups is to logically group sites based on a need for a common type of data.
Possible groupings might be based on geography, service branch, or function (e.g., J2, J3, etc.). Groups
then provide a convenient way of assigning multiple destinations to a file within the GBS file wrapper.
The file name of each file in the directory represents the name of a group. Each of these files contains the
names of the destinations that are part of the group.

The receive sites have control over the groups in which they belong. Each site registers locally to belong to
one or more groups. A site is encouraged, but not required, to notify the BMC when they change group
membership. Therefore, a source site should not rely on their assumption of who belongs to a group.

2.1.6 GBS File Types

The file $GBS_HOME/config/typeList contains a list of current GBS file types. File types provide a
means of categorizing the files that are sent across the GBS broadcast. These file categories can then be
used by the receivers of the broadcast to determine which file types should be saved, where they should be
saved, and which types should be discarded. File types also provides a convenient means of viewing the
data that has been received over the broadcast. GBS file types can be segmented into sub-types to form
type hierarchies. For example, an imagery file type could be broken into primary and secondary sub-types.
Each of these subtypes could then be broken down further into the type of imagery such as NITF, JPEG
etc. Each file transmitted across the GBS broadcast is required to have one of these types specified in the
wrapper.

2.1.7 Keyword File

The file $GBS_HOME/config/keywords contains a list of current GBS keywords. Keywords again provide
a way for the receive locations to look for specific files of interest or to screen out files that are not of
interest.

2.1.8 Process Management

All background (daemon) GBS UNIX programs are managed by a controlling program called the
processMonitor. The processMonitor provides feedback on the status of the system, keeps daemon
programs running, restarts programs if they terminate, notifies the user when critical programs are down,
and schedules programs to run periodically or at specific times. A single processMonitor program runs on a
GBS machine. The processMonitor determines which programs to control and how to control those
programs by reading configuration files. The configuration files read by the process monitor are passed as
command line arguments following the option -f as shown below. Multiple configuration files may be
passed to the processMonitor by specifying multiple -f options.

processMonitor -f processFile [-f processFile]

GBS Software Architecture: Version 2.1 (February 3, 1997) Page 11

Each configuration file uses key value pairs to describe the programs that are to be monitored by the
processMonitor. Table 3 Process File Options shows the valid key value pairs that can be used within a
configuration file. Lines in a configuration file beginning with # are comments.

Table 3 Process File Options

Parameter Description

PROGRAM: Defines the executable file to be run. This can be a Bourne shell
script, Perl shell script, C program, etc. The only known thing that it
can not be is a C shell script.

NAME: Name of the process which should be understandable by the end user
of the system.

ARGUMENTS: Specifies arguments to be passed to the executable. All Standard
arguments such as -f filename are supported. Output redirection
using >, >!, >> etc. are not supported. Output is redirected via the
keywords SDT_OUT: and STD_ERR.:.

STATIC: No value required for this key. This indicates that the program

should always be kept running.

START EVERY N_MINUTES:

Indicates that the program is to be run periodically (Positive
Integer).

SCHEDULE:

Specifies a schedule of times when the executable is to be run. This
is a string similar to a cron entry. The string must contain five
SPACE separated integer patterns: minute (0-59), hour (0-23), day
of the month (1-31), month of the year (1-12), day of the week (0-6
with 0=Sunday). Each of these patterns may be either an asterisk
(meaning all legal values) or a list of elements separated by commas.
An element is either a number or two numbers separated by a minus
sign (meaning an inclusive range). Note that the specification of
days may be made by two fields (day of the month and day of the
week). Both are adhered to if specified as a list of elements. See the
man page on crontab for examples.

CONDITIONAL:

Indicates that the program may or may not be started based on the
return value from the specified executable. If the specified
executable has a positive exit status (1) the program will be started.
Otherwise the program will not be started.

MAX RESTARTS:

An integer specifying the maximum number of times to restart the
program. This overrides the default value of 10 for a static
programs.

CRITICAL:

No value required for this key. Indicates that it is critical that the
static program remain running. If this program terminates a system
alert will be issued. If it terminates and exceeds the maximum
allowed restarts, a system alert will be generated every 5 seconds.

STD_OUT:

Specifies a file to which output that would normally go to the
standard out will be written.

STD_ERR:

Specifies a file to which output that would normally go to standard
error will be written.

INIT_EXEC:

Specifies an executable to be run before the program will be run.
This allows initialization required by the program to be performed,
though it is strongly recommended that the program perform its own
initialization.

GBS Software Architecture: Version 2.1 (February 3, 1997) Page 12

The definition of a program to monitor begins with a line beginning with PROGRAM:. The definition
continues until another PROGRAM: line or the end of the file is encountered. Listed below are rules
regarding the program specifications:

¢ The NAME: and PROGRAM: lines are required for each process.

e The options STATIC: and START_EVERY_N_MINTUES: are incompatible.

e The options STATIC: and SCHEDULE: are incompatible.

e The options SCHEDULE: and START_EVERY_N_MINUTES: are incompatible.
e MAX RESTARTS: is only applicable when the STATIC: option is also specified.
e CRITICAL.: is only applicable when the STATIC: option is also specified.

If any errors are encountered in reading a configuration file the program where the error was encountered
will not be managed by the processMonitor. Errors can occur when invalid data is entered in the file such
as a line that reads

START_EVERY_N_MINTUES: YES

where an integer was not provided or if any of the above mentioned incompatible combinations of options
are specified.

The program pmDriver provides insight into the processMonitor and to allow the user to send commands
to the processMonitor affecting how programs are managed . This program is provided for convenience
only; it is not necessary for the normal operation of the GBS software. The pmDriver program is a menu
driven command line program. When pmDriver is started, it requests that the user enter the host name of
the computer where processMonitor is running and then presents the user with a menu. Table 4 pmDriver
Menu describes the menu options.

Table 4 pmDriver Menu

Menu Item Description

System Status Request Sends a system status request to the processMonitor and displays
the results.

Restart Stopped Static Process Commands the processMonitor to restart a static program that is

no longer running or being restarted since it has reached the
maximum number of restarts.

Cycle Static Process Commands the processMonitor to terminate and then restart the
specified static program.

Stop Managing Process Commands the processMonitor to terminate and no longer
manage the specified program.

Read Process File Commands the processMonitor to read the specified

configuration file and begin managing any programs that are in
the file (any programs already being managed are ignored).

Replace Process From File Commands the processMonitor to terminate the specified
program and begin managing the specified program using the
options from the specified process file.

Run Periodic Process Now Commands the processMonitor to run a scheduled or periodic
program immediately rather than at the next scheduled execution
time.

GBS Software Architecture: Version 2.1 (February 3, 1997) Page 13

2.2 GBS Data Source

Each GBS data source that provides data files to GBS for inclusion in the broadcast must install the GBS
source software and have network connectivity to the BMC, in particular the to GBS gateway machine. A
data source normally supplies files to a single gateway. However, the software does support sending files to
multiple gateways. The current GBS gateways are listed in Table 5 GBS Gateways. Furthermore, each
source must contact the GBS gateway support personnel to obtain a login to the GBS gateway machine.
This login is a limited account which will allow the source to transfer the files for inclusion in the
broadcast to the GBS gateway machine and will not allow the users to login to the GBS gateway machine.
If the source will be wrapping files through the Web interface, the source must also be granted access to the
HTML and CGI programs on the GBS gateway that provide the Web wrapping functionality.

Table 5 GBS Gateways
IP Address of GBS Gateway Description
199.55.96.180 BC2A US Secret Gateway (located at the Pentagon)
199.55.96.183 BC2A NATO Gateway (located at the Pentagon)
199.55.96.181 GBS Testbed US Secret Gateway (located at the Pentagon)
JITI Mobile Gateway

Once the source computer has been configured, the user may send data files over the broadcast by selecting
the files to send and adding the GBS wrapper. The GBS wrapper can be added interactively through the
use of a Graphical User Interface (GUI) program called wrap or by running an interactive command line
program called wrapit. The wrapit program allows multiple files to be wrapped by specifying the wrap
option on the command line or within a default wrap file. Use of the wrapit program can be automated in a
script or by other means if the source wishes to automatically wrap files. The wrapit program has the
following syntax:

wrapit [-d <defaultFile>] [options] <filename>

The options are listed in Table 6 wrapit Options. Reference the GBS Wrapper document for additional
information regarding the setting of the values.

Table 6 wrapit Options

Option Allowed Value

-P priority integer 1=FLASH, 2= OP IMEMDIATE, 3=PRIORITY,
4=ROUTINE

-D dest ascii string - can be more than one -D entry

-t type ascii string, the type must match an entry in the typeList
configuration file

-r must_receive

-c file_markings ascii string

-p permissions octal int

-A ascii

-C make copy

-i file_info ascii string (single line)

-w signature ascii string (single line)

-q qulaity_of service h=high, m=medium, I=low

-F frequency_of retrans | int (minutes)

-L late_after ddhhmm{z]} mon yy

-b start_at ddhhmm|[z] mon yy

-1 relative_location ascii scring

GBS Software Architecture: Version 2.1 (February 3, 1997) Page 14

Option Allowed Value

-m mail_on bitwise or of the following:
1 = when file is done being transferred
2 =on error free receipt
4 = on receipt with errors

- ¢_mail ascii string

-k archive_days int

-E

error_tolerant

-I replaces ascii string
-B BENumber ascli string
-0 expires ddhhmm[z] mon yy
-K keyword ascii string
-U name:val ascii string

Once the files have been wrapped, a daemon program called xferit uses fip to send the files to the BMC.
Figure 2 GBS Data Source Architecture shows the architecture of a GBS data source supplying files to be
included in the GBS broadcast.

g

Source Computer \

$GBS_HOME/wrapped
$GBS_HOME/wrapped/notify

$GBS_HOME/wrapped
$GBS_HOME/wrapped/notify

Figure 2 GBS Data Source Architecture

The xferit program periodically polls the $§GBS_HOME/wrapped/notify directory to determine whether any
files need to be transferred to the gateway. If any new files are found, then xferit will invoke ftp (which
requires that the $GBS_HOME/.netrc file be configured to log into the gateway without a password and
change into the correct directory). Once the file is transferred, xferit will delete both the wrapped and notify

files.

GBS Software Architecture: Version 2.1 (February 3, 1997)

Page 15

2.2.1 Simplified Data Source

A site can also forward files to be included in the broadcast without installing the GBS software locally. A
site can obtain an ftp login at the gateway and work with an operator at the gateway to set up a defaults file.
Then the site ftps a file to the gateway and it is wrapped based on the defaults file and included in the
broadcast.

2.3 Broadcast Management Center (BMC)

The broadcast management center has four main functions. The first is to accept files from the data
sources for inclusion into the GBS broadcast. This function is performed by the Gateway. The second
function is to queue the files received from the data sources to the appropriate transport. This is performed
by the Queue Manager in close concert with the Gateway. There is a queue manager for each of the
supported transport mechanisms currently ATM and IP. The Queue Managers and the Gateway must share
the same $GBS_HOME/wrapped and $GBS_HOME/queues directories, although the Gateway and Queue
Manager functionality need not exist physically on the same computer. The third function is to provide an
indication to the receive terminals about the status of the broadcast. The fourth function is to add stream
data to the broadcast. Figure 3 BMC Architecture shows the architecture of the BMC.

Figure 3 BMC Architecture

$GBS_HOME/queues/IP/new Stream Data

{

Queue Manager (IP) }

*[GBS Gateway

$GBS_HOME/wrapped

Queue Manager (ATM)]

$GBS_HOME/wrapped/notify

$GBS_HOME/queues/ATM/new T

Stream Data

2.3.1 Gateway

The Gateway receives files from the GBS data sources, determines the type of transport required (ATM or
IP), and passes the files to the appropriate queue managers for inclusion into the GBS broadcast. Files
received from the sources can either be wrapped files ready for transmit or files that have not yet been
wrapped. Files that have not yet been wrapped will be wrapped by the autowrap program. The GBS file
wrapper is parsed to determine any special processing required for the file such as periodic transmission.
Various fields within the wrapper are updated to show the processing steps that have been completed. The
type of transport required is determined from the wrapper based on the destinations. Each destination in
the wrapper is mapped to one or more transport mechanisms via the file described in Destination File.

GBS Software Architecture: Version 2.1 (February 3, 1997) Page 16

GBS version 2.1 automatically places the destination “all” into the header for each file, unless either alllP
or allATM is specified when the file is wrapped. The destination “all” has both ATM and IP queues
specified. Therefore, for version 2.1 of GBS most files are sent out over both queues. Figure 4 GBS
Gateway Architecture shows the architecture of the Gateway.

$GBS_HOME/unwrapped/notify

$GBS_HOME/queues/ATM/new
$GBS_HOME/queues/IP/new

$GBS_HOME/wrapped
$GBS_HOME/wrapped/notify

$GBS_HOME/wrapped/timed

Figure 4 GBS Gateway Architecture

2.3.2 Queue Manager

There is a data file queue for each transport mechanism, ATM and IP. Files are scheduled for inclusion into
the broadcast based on values from the wrapper such as the priority and on the internal configuration for
each queue. Each queue may be configured as described in the MTN Queue Manager Reference Manual.
Figure 5 Queue Manager Architecture shows the queue manager architecture.

GBS Software Architecture: Version 2.1 (February 3, 1997) Page 17

$GBS_HOME/queues/ATM/new
$GBS_HOME/queues/IP/new

$GBS_HOME/wrapped/notify
$GBS_HOMEAIfDir

Figure 5 Queue Manager Architecture

When a file is scheduled for transmit, it is added to the broadcast by the send program. The send program
sends data out over UDP port 6566 for the IP transport and over the VP/VC specified in the file
$GBS_HOME/config/typeList for that ATM transpor. When a type does not specify a VP/VC, then the
VP/VC of the first type within the hierarchy, which specifies a VP/VC, is used. If no VP/VCs are specified
for the type or any of its parent types the default VP/VC (0/100) is used.

Periodically the scheduler program writes a list of all files that have been sent out over the broadcast into
the $GBS_HOME/logs/thl directory. This summary is processed by the tifmanager program. The
tifinanager program uses the list along with previous lists that have been generated by the scheduler to
create a history of summary information on the files that have been sent. Summary information on a file
remains in the history for a configurable period of time (6 hours by default). The history of summary
information is periodically wrapped using the type system. thl and sent over the broadcast so that
receive sites can determine if all files sent over the broadcast have been received. The file type
system. thl should only be used by the tfinanager.

A graphical user interface is provided to allow the user to view the status of the data file queues. This
interface is through the program gman which is described in the MNT Queue Manager Reference Manual.

2.3.3 Broadcast Status

Data file traffic across the GBS broadcast may not be constant as it is dependent on when the sources insert
files into the broadcast. For this reason, the BMC adds a small but constant flow of status information to
the broadcast so that the receive sites have feedback on the status of the broadcast at all times. This
“heartbeat” is provided through the statusClient program which periodically (every five seconds by
default) sends small messages over the broadcast on UDP port 6550 for IP and VP/VC 0/90 for ATM. The
text of the message is created by BMC operators (initially, the messages are empty strings). This allows the
operators of the BMC to notify receive sites of upcoming events, planned outages, etc. A message can be
either sent to all queues supported by a Gateway, or a single queue. For queue specific messages, the
Queue Manager GUI program gman allows the user to enter the textual message to be sent over the

GBS Software Architecture: Version 2.1 (February 3, 1997) Page 18

broadcast. A GUI program called msgGen allows the user to enter a textual message which will be sent
across all queues. The gman and msgGen programs send the textual messages to the statusClient over UDP
port 6548; the statusClient inserts all status messages into the broadcast for a single queue. The msgGen
program sends the message to all statusClient programs, and the gman program sends the message to only
the statusClient program running on the same machine. Figure 6 Broadcast Status Architecture shows how
the status messages are sent to the broadcast.

Figure 6 Broadcast Status Architecture

2.3.4 Broadcast Stream Data

Stream data such as TDDS or Binocular can also be sent over the GBS broadcast from the BMC. The
stream of information must be received through a serial port in the BMC. The program streamClient reads
the data from the serial port and adds it to the broadcast. There is no processing of the data; as many bytes
as possible are read from the serial port, and then immediately sent over the broadcast. A different copy of
streamClient is required for each serial data stream to be added to the broadcast and transport mechanism.
Therefore, if TDDS data was to be provided to both the ATM and IP broadcasts, two instances of the
streamClient program would need to be configured and the trap data would need to be received on two
separate serial streams. Serial data added to the IP broadcast is sent over UDP ports starting with port 6552.
Serial data added to the ATM broadcast is sent over VP/VC’s starting with VP/VC 0/91. Figure 7
Broadcast Stream Data Architecture shows the architecture of how streams are broadcast over a single
transport.

GBS Software Architecture: Version 2.1 (February 3, 1997) Page 19

Serial Data Stream
(e.g., TDDS)

Serial Data Stream
(e.g., BINOCULAR)

Serial Data Stream

Figure 7 Broadcast Stream Data Architecture

The streamClient program is always passed a configuration file as a command line option. This
configuration file is first parsed for the generic configuration options and then for stream specific options
(the 2 types of options can be interspersed). The pound symbol (#) located in the first column of any line
indicates that the line is a comment. Any lines that begin with a space character are ignored during parsing
for the generic configuration options (see Appendix C for a detailed list of all options); all stream specific
configuration options begin with a space character. The stream programs interpret the debug flag (set
through the generic configuration options) to indicate that the data should be duplicated to stdout as well as
sent over the broadcast or to a tty port. This is often used to visually verify that data is be transmitted.
Table 7 Stream Configuration Parameters describes the different options that are used to configure both the
streamClient and streamServer programs.

Table 7 Stream Configuration Parameters

Parameter Type Description Default Value
IN inputPort String tty device to read /dev/ttya
OUT outputPort String tty device to write /dev/ttyb
S streamName String Specifies which stream, used to first stream
determine the UDP port or VP/VC
RS232 This is followed by one or more of
the next parameters
b baud Integer Supports baud rates of 300, 600, 9600
1200, 2400, 4800, 9600, 19200, and
38400
s stop_bits | Integer Must be either 1 (No stop bits) or2 | No stop bits
(stop bit)
pe none Even parity No parity
pE none Even parity No parity

GBS Software Architecture: Version 2.1 (February 3, 1997) Page 20

Parameter Type Description Default Value
po none Odd parity No parity
pO none Odd parity No parity
pn none No parity No parity
pN none No parity No parity
d data_bits | Integer Mustbe 5,6, 7, or 8 8 data bits
rrts_cts Integer 0

Table 8 Sample Stream Configuration File shows a configuration file for a hypothetical news feed data
stream. It is important to list all the streams in the same order in each stream configuration file. This list is
used to determine which UPD port or VP/VC should be used.

Table 8 Sample Stream Configuration File

d1 # stream duplicated to stdout (generic configuration option)
s 3 # Support 3 streams (generic configuration option)
NEWS_FEED # 1* stream name (following s option)

RADIANT JADE # 2™ stream name (following s option)

BINOCULAR # 3" stream name (following s option)

S NEWS_FEED
RS232 b 2400 pe d7
OUT /dev/ttya

(stream specific option)
(stream specific option)
(stream specific option)

2.3.5 Crypto Synchronization

Another feature provided by the BMC for the IP broadcast is synchronization for the receive cryptos. The
syncerClient program periodically sends a synchronization data packet (string of zeros) over the IP
broadcast UDP port 6551. If the receive crypto is in a state waiting for a synchronization data packet and
receives it, it will attempt to regain synchronization. This feature is not required for the ATM broadcast
because the ATM switch can provide the resync pulse to the crypto. A corresponding syncerServer
program is provided for testing and does not run during normal operation.

2.4 GBS Receive

The GBS receive software performs three major functions. The first is to provide feedback on the status of
the broadcast to the user. The second is to receive the data files being sent over the broadcast and possibly
save them at the receive site. The third is to provide insight into the files that have been received and allow
the user to manage these files either from the primary receive workstation or on the local area network. A
typical receive site configuration is shown in Figure 8 Receive Suite Architecture.

GBS Software Architecture: Version 2.1 (February 3, 1997) Page 21

~

LAN Workstations

File Management l

! Receive Workstation

——
File Receipt and
Storage

—

—
Broadcast Status

O —

File Management

S

~——

Figure 8 Receive Suite Architecture

2.4.1 File Receipt and Storage

A receive workstation can listen to a single broadcast (ATM or IP). Figure 9 File Receipt and Storage
Architecture shows the architecture of the receive workstation.

$GBS_HOME/config/disposeRules

$GBS_HOME/data
$GBS_HOME/receive/.dsa_assem $GBS_HOMEheader/new/error

- - $SGBS_HOME/header/mew/save 00— 1OME/eader/retranReq
$GBS_HOME/header/new/discarded
$GBS_HOME/header/current
$GBS_HOME/must

$GBS_HOME/ receive
$GBS_HOME/receive/.received ,
$GBS_HOME/receive/bad_receive
$GBS_HOME/receive/.bad_received
$GBS_HOME/receive/good_receive

Figure 9 File Receipt and Storage Architecture

GBS Software Architecture: Version 2.1 (February 3, 1997) Page 22

The program mar reads data from the broadcast on UDP port 6566 for IP transport and from VP/VC 0/100
along with the VP/VC’s specified in the file SGBS_HOME/config/typeList for ATM transport. The mar
program receives information on the size of the file being received as part of the data itself and does not
parse the wrapper. The mar program reads the file from the broadcast, saving it in
$GBS_HOME/receive/.dsa_assem. If the entire file is read successfully, it is moved to the directory
$GBS_HOME/receive/good_receive. The .dsa_assem and good_receive directories must be on the same
file system so that the move operation is an atomic operation. The mar program creates an empty file in
$GBS_HOME/receive/.received to indicate that the file has been correctly received.

If there is an error in receiving the file, the file is moved to SGBS_HOME/receive/bad_receive (also on the
same file system as the .dsa_assem directory) and the number of bad bytes is written to a file of the same
name in $GBS_HOME/receive/.bad_received.

To improve system performance while receiving very large files, mar sends a request to the dispose
process while the file transfer is still in progress. The dispose program then reads the wrapper portion of
the file and determines whether the file will be saved. Based on the reply from dispose, mar will either
continue saving the file or just discard the remainder of the file.

The program dispose determines whether or not each file should be saved on the local file system and the
location(s) to store the file. These determinations are made by evaluating the information in the wrapper of
the file received against a set of disposition rules. A graphical user interface called the dispose rule editor
allows the user to create and edit the disposition rules (the GBS Training and User’s Manual describes the
dispose rule editor). The first step in determining whether or not to save the file is to collect the set of one
or more applicable rules. Which rules are applicable is based entirely on the file's type (specified in the
wrapper). All rules whose type exactly matches the received file's type are applicable. If no rules are found,
then wildcarded rules of similar type are selected. Of the wildcarded rules that match, only those rules with
the most fully specified type are considered for further processing.

In the case where no rules can be found to match the received file's type (with or without wildcarding) then
the 'default' rule can be used. There can be only one default rule, which has the type UNKNOWN. If this rule
exists, then it becomes the only applicable rule. If no rules are found applicable, then the received file is
discarded unless the file was wrapped with the must save option. If the file was wrapped with the must save
option and no matching rules are found, the file is saved in the directory $§GBS_HOME/must.

After the applicable rules have been selected, each of these rules are evaluated against the received file to
determine whether they match the file. The rules are evaluated by checking each of the rules criteria to
determine whether it matches, If any of the criteria fail, then the entire rule does not match the received
file. After the applicable rules are all evaluated, then the received file is saved or discarded based on the
matching rules. If no rules matched against the file, then the file is discarded. If any of the matching rules
specify that the file should be saved, then it is saved in each of the directories per the rule(s) that matched.
A received file can be saved to multiple locations because a single rule can specify more than one save
location. In addition, multiple rules can match the same file. If none of the matching rules cause the file to
be saved, then the file is discarded. Every file that dispose processes is logged to a system file
$GBS_HOME/logs/commandlog which provides a history of what files were discarded or saved along with
the reason for the action.

When a file is saved, its date is set to the date on the original file and the file permissions are set according
to the wrapper (defaults to the original file’s permissions). Also, an expiration time (the time when it will
automatically be removed from the system) is determined. The expiration time of each of the rules that
caused the file to be saved is examined; the largest of all the expirations times is added to the current time,
and this becomes the file's expiration time. If this file is not locked, then it will be automatically deleted
after its expiration time.

The directories specified as save locations for the files in the rules are typically under $GBS_HOME/data.
However, they may be any directory that is visible from the GBS receive terminal. This includes directories
that have been Network File System (NFS) mounted from other machines. Furthermore, the standard

GBS Software Architecture: Version 2.1 (February 3, 1997) Page 23

$GBS_HOME/data path may be used in the rules but subdirectories can contain NFS mounted file systems
from other machines. In this way, the data received over the GBS broadcast can be made available to other
applications on the local area network.

The program rtxmanager is the automatic retransmission manager. This program processes files containing
summary information on all files that have been sent out from the BMC as described in section 2.3.2. The
automatic retransmission manager reads the summary information and queries the data manager to
determine if a particular file sent by the BMC has been received. Any files that have not been received are
added to an automatic retransmission request. This request is then sent to the BMC by executing a CGI
script at the IP address specified in the file SGBS_HOME/config/gatewayIP. If no backchannel exists
between the receive site and the BMC the file $SGBS_HOME/config/gatewayIP will be empty and no
automatic retransmission request will be made. The program r&xmanager also checks to determine if the
hardware is setup to receive files of the type indicated in the file summary. This check is made by checking
the file $GBS_HOME/config/typeList to determine if a multicast address or VP/VC has been assigned to
the type. The file SGBS_HOME/config/subscribe.cfg is then checked to determine if the multicast address
or VP/VC was being listened to when the file was originally broadcast. Files that have not been received
are also added to the data manager so that the user knows that files were sent but not received.

Whenever a new file is processed by either the dispose or rtxmanager programs, information about the file
is saved by sending it to the dmServer. The dmServer serves as a data repository containing file information
about the broadcast files for the receive site. File information about the broadcast files is updated in the
dmServer by the dispose and rtxmanager programs and made available via the dmServer to other
applications on the local area network that provide file management capabilities as described in section
2.4.3.

2.4.2 Receive Broadcast Status

Status information sent out by the Broadcast Management Center (BMC) as described in section 2.3.3 is
received and processed by each receive site. The program statusServer receives the status information and
textual messages sent out by the BMC. Textual messages are saved in the file
$GBS_HOME/logs/messagelog. The status information is passed via IPC to the »dm program for display to
the user. The rdm program provides a graphical user interface that shows the status of the broadcast at all

- times and is described in the GBS Training and User’s Manual.

The program mar receives the file information from the BMC. This program sends information about the
files being received via IPC to the statusServer program. The statusServer program formats the status
information into textual messages and passes these messages to the rdm for display to the user. Figure 10
Receive Broadcast Status Architecture shows the architecture of the broadcast status processing at the
receive sites.

GBS Software Architecture: Version 2.1 (February 3, 1997) Page 24

$GBS_HOME/ogs/messagelog
$GBS_HOME/logs/new_message

Figure 10 Receive Broadcast Status Architecture

2.4.3 Receive Stream Data

Stream data such as TDDS or Binocular can be received over the GBS broadcast from the BMC. The
program streamServer reads the data from the broadcast and then writes it to a tty port. There is no
processing of the data; as many bytes as possible are read from the broadcast, and then immediately written
to the tty port. If the streamServer’s configuration file turns on debug, then the data is also written to
stdout; this is used to support viewing the data (typically using Oilstock) on the receive workstation. An
instance of the streamServer program runs on the receive workstation for each stream that the site wants to
receive (a receive site does not have to listen to every stream being broadcast). The streamServer program
is configured in the same manner as the streamClient program which is described in section Broadcast
Stream Data. Figure 11 Receive Stream Data Architecture shows how the architecture supports receiving
streams.

GBS Software Architecture: Version 2.1 (February 3, 1997) Page 25

Oilstock.

L.

Serial Data Stream
(e.g., TDDS)

>
Serial Data Stream
(e.g., BINOCULAR)

[

Serial Data Stream

Figure 11 Receive Stream Data Architecture

2.4.4 File Management

A list of all files known by the receive site is saved to provide insight into the workings of the broadcast.
More importantly, it provides the user easy access to information on what has been sent over the broadcast,
what has been received, and where the files that were received are saved. The program dmServer maintains
the list of information on all files known by the receive site. This program is known as the Data Manager
and maintains the list of file information in a flat file of fixed length records in the directory
$GBS_HOME/header/dat.

Other information such as the type list from the configuration file $GBS_HOME/config/typeList is also
stored in fixed sized flat files containing fixed length records within the directory
$GBS_HOME/header/dat. These additional files allow the dmServer to create simple cross references to
data such as the file type which greatly reduces the amount of space required to store the type of each file.
The files in the directory $GBS_HOME/header/dat are strictly for use by the program dmServer and should
NOT be changed by any other means. To provide the best possible performance, the dmServer program
maps the flat files into memory, so they must be stored on a local file system on the machine where the
dmServer runs. The data manager server is currently sized to support information on 100,000 broadcast
files. Table 9 Data Manager Data Files describes the four data files used by the dmServer.

GBS Software Architecture: Version 2.1 (February 3, 1997) Page 26

Table 9 Data Manager Data Files

Data File Description

Max Records | File Size

typeMap Contains the list of known file types with an identifier 500 44 KB
for each (similar to relational database reference table).
markingMap | Contains the list of known file markings with an 200 16 KB

reference table).

identifier for each (similar to relational database

fileList Contains the list of files, including saved, discarded, 100000 272 MB
deleted files. This contains a subset of the meta data
from the wrapper which can be viewed through the GUI

file managers.

dispositions | Contains the directories where any currently saved files | 150000 13.8 MB

are stored.

The dmServer program provides an Application Program Interface (API) that allows multiple programs to
connect to the server and make requests. The types of requests supported include: retrieve the reference
data (types and markings), search for a list of files, add file records, and lock/unlock/delete files. This
interface also supports asynchronous notification of events such as new files, lock/unlock files, delete files.
The dmServer normally runs on the receive workstation, although this is not necessary; it can run on any

networked Sun workstation.

A test program, dmTestAPI, is provided to debug problems and verify the data file integrity. This program

is provided for convenience only; it is

not necessary for the normal operation of a receive site. This

program displays a row ID with each data record; this row ID provides the same information as a relational
database key. The row IDs are used internally, and never presented to the user by either rfm or nfin. The
dmTestAPI program is a menu driven command line program. When dmTestAP] is started, it presents the
user with the Connection Menu. Table 10 dmTestAPI Menus describes the menu options.

Table 10 dmTestAPI Menus

Connection Menu

Menu Item

Description

Connect to Data Manager

Connect to the data files or dmServer based on the current setting
of the connection mode. After the connection is made, the
Request Menu will be presented.

Change to Data Manager server mode

Current state is set to access the data files directly, not through
the dmServer. Selecting this toggles the connection mode.
This is the default setting.

Change to Data Manager test mode

Current state is set to access make requests through the dmServer.
Selecting this toggles the connection mode.

The request options with the comment “(not in API)” are not
available when the dmTest4PI is making requests through the
dmServer.

Exit Exit the program

Request Menu

Menu Item Description

Print This List Redisplay the list of menu options

Get Types Retrieves the type reference table and prints the new list
Get Markings Retrieves the marking reference table and prints the new list
Add New Type Prompts to add a new file type

GBS Software Architecture: Version 2.1 (February 3, 1997)

Page 27

Add New Marking Prompts to add a new file marking

Print current Type Map Prints the dmTestAPI's cached type map

Print current Marking Map Prints the dmTestAPI's cached marking map
Generate Test Records Prompts for information to add new file records
Lock File Prompts for a file row ID to lock

Un-Lock File

Prompts for a file row ID to unlock

Mark File for Delete

Prompts for a file row ID to ‘delete’. This actually just marks the
file for deletion, it won’t be deleted until cleanup runs. However,
this file will not appear in saved file query requests

Retrieve Dispositions

Prompts for a file row ID to retrieve saved file locations

Delete file dispositions (not in API)

Not currently supported

Free file (not in API)

Prompts for a file row ID to remove from the data files.

Last 10 Active Rows

Retrieves the 10 most recent rows (not limited to saved files)

1st 10 Active Rows

Retrieves the 10 oldest rows (not limited to saved files)

Search Prompts for search criteria. This search supports the entire set of
: criteria that the dmServer supports.
List all file details Toggles an internal flag to the dmTestAPI. When file rows are

printed, all the information stored for the row is displayed.

List file with summary information

Toggles an internal flag to the dmTestAPI. When file rows are
printed, only a subset of the information stored for the row is
displayed.

This is the default setting.

Mask out Row ID

Toggles an internal flag to the dmTestAPI. When file rows are
displayed, always show the row ID as 0. This supports testing the
compression algorithms which change the row IDs.

Print correct Row ID

Toggles an internal flag to the dmTestAPI. When file rows are
displayed, always show the correct row ID.
This is the default setting.

Print All Rows (not in API) -

Retrieves all active records (in time order). This can be used to
dump the contents of the data files to an ascii file.

Data Manager Status

Retrieves statistics about capacity of the data files.

Count Active Rows (not in API)

Walks through the entire file list to count the active records; thlS
supports testing the data file integrity.

CleanUp - Expire Files

Causes all files whose expiration time has passed and are not
locked to be marked for delete.

Changes the status of any files that are marked for delete to
deleted, and removes any saved files that no longer have a file
record with a status of saved.

This function is available through dmUtility -expire.

CleanUp - Purge Deleted Files

Remove file records that are older than the specified threshold
and do not reference saved files.

This function is available through dmUtility -purge
<olderThanHours>.

Verify Data Files

Verifies the data file integrity by performing many different
checks. This will prompt whether it should automatically attempt
to fix problems (most cannot be automatically fixed at this time).
Some problems will be fixed even if you do not request to fix
problems.

This function is available through dmUtility -verify.

Compact Data Files

Resequences the fileList data file to provide optimum access.
This function is available through dmUtility -compact.

GBS Software Architecture: Version 2.1 (February 3, 1997)

Page 28

Expand Data Files Increases the size of the data files.
This function is available through dmUtility -expand.

Disconnect from Data Manager Disconnect from the Data Manager. After the connection is
broken, the Connection Menu will be presented.
Exit Exit the program

The program dmConvert is used to initially create the data files. If the data files become corrupted, then
dmConvert can be run again to re-create the data files from the header files that have been saved.

The dmUtility is a command line program that calls certain dmServer API calls based on command line
arguments. This is automatically run periodically to perform maintenance on the data files including
expiring, purging, and compacting as described in Table 10 dmTestAPI Menus.

Figure 12 File Management Architecture shows the architecture that allows information saved in the data
manager to be accessed. Information on files received over the broadcast and on files that were sent over
the broadcast are created in the data manager as described in section 2.4.1. These entries can be viewed
thrbugh one of two graphical user interface programs. The first program called »f (receive file manager)
is a Motif based application that will only run on UNIX systems. The second program called nfin (Netscape
file manager) is a web based application that will run on any machine with a web browser and access to the
machine on which the dmServer program is running. Both #fin and »fin are described in the GBS Training
and User’s Manual. Both of the file management user interface programs interact with the Data Manager to
obtain information on the files that have been sent and possibly received over the broadcast. Furthermore,
these programs can be run on any machine that is networked to the machine on which the dmServer is
running.

Receive Workstation

“dmUtility

K

e

$GBS_HOME/header/dat

D

/ $GBS_HOME/data

Networked PC
Networked Workstation

Figure 12 File Management Architecture

GBS Software Architecture: Version 2.1 (February 3, 1997) Page 29

2.4.5 Executive

The executive program provides a window across the top of the screen containing a clock depicting the
time in Zulu format, and a pane of buttons. The button pane displays a menu when one of the buttons is
selected, which is used to activate various functions or launch programs. The window geometry can be
completely controlled via entries in the executive's configuration file. The executive supports interprocess
communication via optional pipes to a program's stdin, stdout, and stderr, as well as via sending UNIX
signals to application programs.

The executive uses a Resource File, SGBS _HOME/app-defaults/Executive, to define some of the
appearance of its widgets. Two features that can be implemented in the resource file are Menu mnemonics
and accelerators.

The executive redirects stdout from programs that it starts. The messages are sent to the system console:
either the executive's console if enabled, or the standard UNIX console window. The executive reads a
configuration file, 5GBS _HOME/config/gbs.config, to determine the layout of the pane of buttons and
associated menus. See Appendix D Executive Configuration File for details about the format and content
of this file.

GBS Software Architecture: Version 2.1 (February 3, 1997) Page 30

Appendix A GBS Programs

This appendix lists all of the GBS programs and gives a brief discussion of what they do.

Program Name | Type Location | Description

GBSanchor daemon Gateway | Determines whether a file is immediately forwarded to
GBSarp for broadcast or should be sent to autoxmit for
timed transmit based on the wrapper. Most files are
immediately forwarded for broadcast.

GBSarp daemon Gateway | Determines which transport(s) each file should be sent
over based on the destinations specified in the wrapper.
GBSblert GUI Receive Provides statistics on the Block Errors in the broadcast.
GBSstats GUI Receive Provides network statistics, supporting both IP and
ATM.
Currently not being used
Qmgr GUV/daemon | Q Mgr Original Queue Manager, this program needed to be

running for files to be broadcast.
No longer used

QmgrATM GULl/daemon | Q Mgr Symbolic link to Qmgr, indicates that this program
instance is managing the ATM queue.
No longer used

QmgrIP GUl/daemon | Q Mgr Symbolic link to Qmgr, indicates that this program
instance is managing the IP queue.
No longer used

View GUI All Provides an X Windows based interface to view log
files.

alarm_manager daemon/GUI | Receive Started by the executive to display an alarm window to
the user when an alarm condition exists. The alarm
events are generated by other programs (devicechk,
heartmonitor, etc.) which create an alert file in the /tmp
directory.

alarm_popup GUI Receive Supports the executive with alarm notification
Not used any longer(?)

applinker GUI Receive Allows users to associate file extensions/types with
applications for launching by the GBS file managers
rfm and nfm.

audio_alert daemon Receive Periodically sends 3 beeps to the system console if the
current broadcast status is down and audio alarms are
not disabled.

autowrap daemon Gateway | Looks for notify files in the §GBS_HOME/unwrapped
directory and wraps the corresponding file.

autoxmit daemon Gateway | Supports timed transmit of files by periodically
touching the notify file for GBSarp based on the
parameters in the wrapper.

autoxmitUI GUI Gateway | Displays which files are being periodically
retransmitted and allows the operator to manage these
files.

chdate command Utility Changes a file’s timestamp. This utility was written to
line support maintenance shell scripts (this functionality
could possibly be provided using the UNIX touch -t
command).

GBS Software Architecture: Version 2.1 (February 3, 1997) Page 31

Program Name | Type Location | Description
default gen command Source Creates a defaults file for wrapping based on command
line line arguments.
devicechk daemon Receive Periodically checks disk capacity against user specified
criteria (see devicegui) and generate alarm files in the
/tmp directory if an alarm condition exists.
devicegui GUI Receive Allows the operator to specify which file systems to
monitor for capacity and at what threshold to generate
an alarm.
dispose daemon Receive Determines whether files received over the broadcast
should be saved based on the dispose rule criteria (see
dre).
dmConvert command Receive Creates the data files used by dmServer.
line
dmServer daemon Receive Manages the list of files known on a receive system.
Provides an interface for other programs to submit new
data as well as query the current data.
dmTestAPI command Receive Test support program, interfaces with the dmServer.
line
dmUtility command Receive Utility program to make periodic requests to the
line dmServer.
dre GUI Receive Allows the operator to edit the dispose rules.
execabout GUI Receive Displays an ‘About’ screen for the exectutive. Due to
the way the executive menu is configured, it is much
simpler to make this a standalone program.
exechelp GUI Receive Displays the help screen for the exectutive. Due to the
way the executive menu is configured, it is much
simpler to make this a standalone program.
executive GUI Receive Provides a system menu bar which is highly
configurable.
filehtml command Receive Supports the #fin by formating the HTML page for the
line file frame.
filewrap GUI Source Allows the operator to edit a wrapper. This is normally
started by wrap.
filterFlash GUI Receive Generats a popup when started by dispose because a
FLASH or FLASH IMMEDIATE message was
received.
No longer used
findlogs
gbstp_recvATM | daemon Receive Original ATM transport program to receive files.
No longer used
gbstp_recvIP daemon Receive Original IP transport program to receive files.
No longer used
gbstp_sendATM | daemon Q Mgr Original ATM transport program to broadcast files,
started by Qmagr.
No longer used
gbstp_sendIP daemon Q Mgr Original IP transport program to broadcast files, started
by Qmgr.
No longer used
heartmonitor daemon Receive Started by the executive to monitor the broadcast status
file, producing an alarm if the broadcast is lost.
logroll GUI Receive No longer used

GBS Software Architecture: Version 2.1 (February 3, 1997)

Page 32

Program Name | Type Location | Description
mar daemon Receive Transport program to receive files from the broadcast.
messagemonitor | daemon Receive Generates alarm files in the /tmp directory when
started by dispose because a FLASH or FLASH
IMMEDIATE message was received.
monitor
msgGen GUI Gateway | Allows the operator to specify a BMC status message
that is sent over all broadcast queues supported by the
gateway.
pmDriver command Utility Provides an interactive command line interface to
line queue the processMonitor about the status of processes
being managed.
popup GU1 Utility Creates a window containing a text message based on
command line arguments.
Not currently used
printwrap command All Reads a wrapper and formats the data into a text
line summary suitable for presentation to users.
procclient GUI Receive Interacts with the processMonitor to allow the operator
to view the status of all managed programs.
processMonitor | daemon All Manages processes based on configuration files,
supports continuous, periodic, and timed processes.
prodtypegen command Q mgr Parses typeList file to extract multicast and VP/VC
line settings which are written to the prodtype.defs config
file.
pte GUI Q mgr Allows the operator to edit the product type database
which affects the scheduling of file transfers based on
file type.
gman GUI Q mgr Provides a status of the current file queue activity and
allows the operator to manage the queues.
rdm GUI Receive Provides a broadcast status to operators including
indication of whether broadcast is up or down, list of
files currently be received, and status messages.
reset_dtr command Receive Initiates script to resync the crypto by toggling the dtr.
line This is automatically started by the statusServer when
the broadcast is lost for 3 consecutive status message
time-outs.
resyncparse command Receive Processes the broadcast status log to generate statistics
line about periods of broadcast outages.
rfm GUI Receive Receive file manager that allows an operator to query
for files and manage those files.
rtxmanager daemon Receive Processes Transmission History Log (THL) files and
requests re-transmission of files that were not received.
runcmd GUI Receive Provides an X Windows user interface to run command
line programs (specified on the command line).
rxt GUI Q mgr Allows the operator to edit the receive terminal
database which affects the scheduling of file transfers
based on when receive sites are available.
scheduler daemon Q mgr Manages the file queues and initiates the transfer of all
files based on priority, product type and receive
terminal database settings, and scheduling algorithms.
send daemon Q mgr Transport program to send files to the broadcast.

GBS Software Architecture: Version 2.1 (February 3, 1997) Page 33

Program Name | Type Location | Description
startNetscape command Utility Launches Netscape with the URL specified on the
line command line. If Netscape is already running, then the
existing Netscape will be asked to display the page
instead a launching another Netscape.
statusClient daemon Q mgr Sends status messages over the broadcast, selects either
[P or ATM protocol based on command line argument.
statusServer daemon Q mgr Receives status messages from the broadcast, selects
either IP or ATM protocol based on command line
argument.
streamClient daemon Receive Sends a stream of data over the broadcast, selects either
IP or ATM protocol based on command line argument.
streamServer daemon Receive Receives a stream of data from the broadcast, selects
either IP or ATM protocol based on command line
argument.
subexec GUI Receive Supports the executive program.
subscribeMgr daemon Receive Waits for a SIGUSRI1 signal indicating that the
typeFile has been modified. Updates the subscribe.cmd
and subscribe.cfg files and then sends a SIGUSR1
signal to mar.
switchQM command Q mgr Switches between old and MTN Queue Managers /
line transports.
No longer used
switchRX command Receive Switches between old and MTN transports.
line No longer used
syncerClient daemon Q mgr Sends sync packets over the broadcast.
syncerServer daemon Receive Receives sync packets from the broadcast.
Not currently used
tifmanager daemon Q mgr Parses the transmission log to periodically create and
send a Transmission History Log (THL) file.
typehtml command Receive Supports the nfin by formating the HTML page for the
line type frame.
wrap GUI Source Allows operators to wrap files.
wrapit command Source Command line interface to wrap files.
line

GBS Software Architecture: Version 2.1 (February 3, 1997)

Page 34

Appendix B GBS Shell Scripts

This appendix lists all of the GBS shell scripts and gives a brief discussion of what they do.

Script Name Description
Kill_naudio Checks for all Paradise audio software running and kills it.
Kill video Checks for all Paradise video software running and kills it.
QmgrATM.startup Startup script for old Queue Manager.
No longer used
QmgrlP.startup Startup script for old Queue Manager.
No longer used
RDM.startup Startup script for rdm program to initialize the environment.
Start_Video Starts Paradise video software
addGBSuser Adds a new user (updating UNIX system files) and configures the
user to access GBS. Can also be used to convert an existing user’s
account to access GBS.
addprinters Configures a system (updating UNIX system files) to use a printer.
archiveManager Automatically run periodically to archive and truncate log files.
audiorate Calculates statistics (about Paradise audio quality?)
autoretranstype Supports configuration of what files should be automatically
requested for retransmission.
cleanupReceive Automatically run periodically to remove old processing files and

archive log files.

convert_rdmconfig

Utility used during GBS software upgrade (version 1.x to version
2.1x) to convert an existing dispose rule file (rdmconfig) to the new
format (dispose.cfg).

gbs_links Makes symbolic links to the dot files (.cshre, .login, .openwin-init,
etc) in the gbs user account in the current directory.
Not currently used

htm]_setup.pl Initializes the environment for web based file wrapping

Not currently used

initializeDSA QueueManager

Runs prodtypegen program to ensure that send has the correct
multicast and VP/VC addresses initially.

load oil_map

Initializes new Oilstock maps.

logManager

Automatically run periodically on source and gateway systems to
remove old wrapped files.

msgGen.startup

Startup script for the msgGen program to initialize the environment.

naudio.startup

Starts Paradise audio software.

process_retx.cmd

Supports web based retransmission requests.

pulse_dtr.exp

Expect script to resync the crypto by toggling dtr. The file contains
commands (with expected responses) to telnet into the router and
toggle the dtr line.

removeBigFiles Utility to help operators find large files that can be removed when
they are running out of disk space.
No longer used

runDSAQueueManager Determines whether the system is configured for the MTN queue
manager.

runOSOQueueManager Determines whether the system is configured for the old OSO queue
manager.

systemShutdown Prompts the operator with instructions about how to shut the system

down safely.

GBS Software Architecture: Version 2.1 (February 3, 1997)

Page 35

Script Name Description
update_vc Signals programs because the typeList has changed and the current
VP/VCs may not be correct.
No longer used
wrap.startup Startup script for the wrap program to initialize the environment.
xferit Daemon process to automatically forward wrapped files on a source

machine to the gateway.

GBS Software Architecture: Version 2.1 (February 3, 1997) Page 36

Appendix C Generic Configuration Parameters

Most GBS programs (with the exception of MTN and executive related programs) parse a generic
configuration file every time they are started; this file is SGBS_HOME/config/default.config. This
appendix lists all options currently supported in this configuration file.

While the file is being parsed, a pound symbol (#) located in the first column of any line indicates that the -
line is a comment. Any lines that begin with a space character are ignored during parsing as well as any
lines that do not begin with one of the options specified below (no error messages are generated).

Parameter Type Description Default Value
a atmDevice String | Name of the ATM device /dev/fa0
B numBuckets Integer | No Longer Used 2
maxSize Integer | Define buckets for transfers. First line 0
maxSize indicates the number of buckets not 50
: including the flash bucket <= 6.
The line beginning with the B option
must be followed by <numBuckets>
lines, each containing the max size of
transfers on those buckets. Numbers
should be in ascending order. Each
bucket goes from prev value to max
value. The last bucket must have max
size 0.
b baseDir String | Path to GBS directory $GBS_HOME if set,
otherwise /home/GBS
¢ numServers Integer | Maximum number of servers running 1
numServers <= 8
C Server Integer | Which server instance < 8 0
d debug Integer | Enables debugging information to be 0
printed to the errorlog file in the logs
directory.
0: all debug output is disabled
1: standard debug output
2: standard and library debug
D dataManagerHost String | Host name where the Data Manager is | “GBS-DataManager”
running
f thitimeframe Integer | No Longer Used 300
h hold_queues Integer | No Longer Used 0
Hold queues when the queue manager
starts
I thlinterval Integer | No Longer Used 60
icnt Integer | No Longer Used 100
jentl Integer | No Longer Used 100
| tickLength Integer | No Longer Used 131072
L dmLockDownMmapPages | Integer | If this is non-zero, then the Data 0
Manager will attempt to lock the file
information data file into physical
memory.
N myName String | 7 Should only be used during testing. Machine’s nodename

GBS Software Architecture: Version 2.1 (February 3, 1997)

Page 37

Parameter

Type

Description

Default Value

o ServerOffset

Integer

This <ServerOffset> is multiplied by
<Server (from the C option)> and
added to the VP/VC specified in the
typeList file to determine which VP/VC
to send a file over on the ATM
transport.

50

PA statusPort

Integer

UDP port number for status messages

6550

PC commPort

Integer

6549

PF gbstpPort

Integer

No Longer Used 77?7
First UDP port number for file data

6560

PM messagePort

Integer

6548

PS streamPort

Integer

First UDP port number for stream data

6552

PZ syncerPort

Integer

UDP port number for sync packets

6551

q highQual mediumQual
lowQual

Integer
Integer
Integer

No Longer Used
Define the number of transfers for the
quality level specified by the wrapper

111

Q numQs
Qname
Qname

Integer
String

No Longer Used

Define queues for transfers. First line
indicates the number of queues < 10.
The line beginning with the Q option
must be followed by <numQs + 1>
lines, each containing the name of the
queues. Queues should be in order of
priority. Each queue name can be no
more than 20 characters. The first
queue is the override queue. To not use
this, make the first line blank

4
“FLASH
OVERRIDE”
“FLASH”
“IMMEDIATE”
“PRIORITY”
“ROUTINE”

r nfmRefresh

Integer

No Longer Used

Number of seconds between when the
Netscape File Manager queries the Data
Manager for the latest files received.

S TimeSliceLength
numSlices
numSlices

Integer
Integer

No Longer Used

Define slices for flow control and time
sharing of the buckets. First line
indicates the length of the time slice (in
milliseconds).

The line beginning with the S option
must be followed by <numBuckets (
from the B option)> lines, each
containing the number of slices
allocated to that queue in each round
robin.

s numStreams
streamName
streamName

Integer
String

Defines the data streams. First line
specifies the number of streams which
must be <= 8.

The line beginning with the s option
must be followed by <numStreams>
lines, each containing the name of the
stream.

2
“TRAP”
“TIBS”

t syncTime

Integer

The number of seconds between sync
packet transmissions

10

GBS Software Architecture: Version 2.1 (February 3, 1997)

Page 38

Parameter Type Description Default Value
T statusTime Integer | The number of seconds between status | 5
message transmissions
u None | Sets super user status to True (used False
during wrapping)
VA status_vp/status_vc Int/ ATM VP/VC for status messages 0/90
Int
VF default_vp/default_vc Int/ No Longer Used 0/100
Int First ATM VP/VC for file transfers
VS stream_vp/stream_vc Int/ First ATM VP/VC for stream data 0/91
Int
x numTransmissions Integer | No Longer Used 1
X numTransports Integer | No Longer Used 3
transportName String | Define transports for file transfers. First | “IP”
transportName line indicates the number of transports. | “ATM”
The line beginning with the X option “FBS”
must be followed by <numTransports>
lines, each containing the name of the
transport. Each transport name can be
no more than 10 characters.
X syncLength Integer | The number of zeros sent in each sync | 50

packet

GBS Software Architecture: Version 2.1 (February 3, 1997)

Page 39

Appendix D Executive Configuration File

The executive configuration file, SGBS HOME/config/gbs.config, defines the executive window layout,
the application processes, and the menus used to control these processes. Each line starts with a keyword.
Most keywords are then followed by one or more values. Comments may be added to the end of any line, -
following a '# character. There may be blank lines in the file, and comment lines starting with '#. A '#
character may be preceded by a '\' (forward slash) if it should not be interpreted as a comment indicator. To
put a newline in a Motif label specifier, simply use "\n". Any keyword for which the default value is
acceptable, or which does not apply, may be omitted. Environment variables will be translated anywhere
they appear in the configuration file. To reference an environment variable put ${ENV_VRBL_NAME}

in the configuration file. This may be preceded by a '\' (forward slash) if it should not be interpreted as an
environment variable reference.

Each keyword name below includes the keyword name, the type of values required (if any), the units of the
value (inside parens), and any range limits on the value(s) (inside square brackets). The type of value is one
of:
integer (just an integer number)
string (a string containing no white space)
string_with_blanks (a string which may contain whitespace - the string is considered to be all
characters between the first non-whitespace character and the last non-whitespace character
before the '#' or the newline - if blanks are desired at the beginning or end of the string
enclose the string in double quotes).

Some keywords include a description of which keyword block(s) it may appear in. Keyword blocks begin
with a * DEFN keyword, and continue until the next *_DEFN keyword. If this line doesn't appear, then
the keyword may only appear within a block starting with the same prefix (e.g MI_LABEL must appear in
an MI_DEFN block).

General Executive Parameters

These keywords may appear anywhere within the configuration file, but it is best to put them all at the
beginning for readability.

Keyword Description

X _MAX_PROCS The maximum number of processes (not counting the main executive

integer [1 <= value <=30] process), that may be running at once.

Default: 30

X_SPAWN_DELTA Minimum interval in which processes will be spawned. This is

integer (seconds) [>=0] provided to prevent the user from spawning lots of processes real fast

Default: 5 and bringing the system to its knees. A value of 0 disables this delay.

X_EXITMSG_COUNT When the executive must exit due to a catastrophic error, all windows

integer [>=0] will disappear. So, in order for the user to see the exit message, it can

Default: 0 be displayed several times (in either the logger window or the console
window) in order to catch his attention, before everything goes blank.
This is the number of times the message will be displayed. Or, if this
value is 0, then the message will be displayed in an OK Popup (once).

X_EXITMSG_DELTA See remarks for X_EXITMSG_COUNT. This is the delay in seconds

integer (seconds) [>=1] between displaying the message. This is ignored if

Default: 2 EXIT MSG_COUNT is 0.

GBS Software Architecture: Version 2.1 (February 3, 1997) Page 40

Keyword

Description

X _LOGOUT_DELAY
integer (seconds) [>=0]
Default: 5

Delay in seconds after sending SIGTERMs to all running processes
before SIGKILLSs are sent to all processes that are still running and the
executive exits. A value of 0 disables the SIGTERMs; the executive just
sends SIGKILLs to all running processes and exits.

X_PROCNAME_CHARS
integer [1 <= Value < 19]
Default: 7

The number of characters in the process name field for log messages.
The field will always be this wide, so successive log messages line up
nicely. Process names will either be truncated or blank filled as
required to yield this many characters.

X _EXECNAME
string [non-null, <20]
Default: "exec "

The name of the main executive process to use in log messages. It will
be truncated if necessary.

X_EXEC_EXEC_KEY
string [non-null, <10]
Default: "IE"

Keystring used to identify executive to sub-executive messages. If a
sub-executive will be created, this keystring MUST be set to something
with which no application message will ever start.

X PROC_EXEC KEY
string [non-null, <10]
Default: Capability disabled

Application processes whose stdout is piped to the executive may send
messages starting with this keystring to the executive. The message
consists of this keystring, a blank, an action set tag, and a newline. The
executive will execute the action set when it receives this message. This
provides application processes a mechanism to operate on executive
menu items and to request the executive to spawn processes.

X_DEBUG_FILE

string [DBG_SMRY,
DBG_MENU, DBG_MSGS,
DBG_RUN]

string ["stdout", or the
pathname of a file [non-null,
<80]]

Multiple: OK as long as

DBG_* is different on each -

occurrence
Default: capability disabled

Each DBG_ keyword defines a category of executive debug print. Each
category can be sent to the executive's stdout or to a file. If the same
pathname appears for more than one category, the debug print for those
categories will go to the same file. It is a good idea to put this at the
beginning of the config file, since a debug flag may enable debug
related to parsing other keywords in the config file itself.

Executive Window Layout Parameters

By default, only the frame and button panel are created.

Keyword

Description

W_FRAME

Specifies the start of a block of window definition parameters

Default: Frame is always created if at
least one of the Console, Clock, or
Buttons subwindows is created

for the frame, consisting of some or all of these keywords:
W_FRAME LABEL, W_LEFT, W_TOP, W_WIDTH,
W_HEIGHT, W_FONT

W_CONSOLE
Default: Console subwindow is not
created

Indicates that a console subwindow should be created. Also
may specify the start of a block of window definition
parameters for the console, consisting of some or all of these
keywords: W_LEFT, W_TOP, W_WIDTH, W_HEIGHT,
W_FONT

W_BUTTONS
Default: Buttons subwindow is created
if there are any M_DEFN blocks

Specifies the start of a block of window definition parameters
for the frame, consisting of some or all of these keywords:
W_FRAME_LABEL, W_LEFT, W_TOP, W_WIDTH,
W_HEIGHT, W_FONT

GBS Software Architecture: Version 2.1 (February 3, 1997)

Page 41

Keyword

Description

W_CLOCK
Default: Clock subwindow is not
created

Indicates that a clock subwindow should be created. Also may
specify the start of a block of window definition parameters for
the clock, consisting of some or all of these keywords:
W_LEFT, W_TOP, W_WIDTH, W_HEIGHT,
W_TIME_FONT, W_DATE_FONT, W_GMT FONT

Background on W_LEFT and W_TOP

Some of the following may no longer apply. See the remarks
under W_POSITION about using W_LEFT and W_TOP
sparingly.

A value >= 0 is the position in pixels.

A value of -1 means do normal default positioning, using "right
of else below" rules.

A value of -2 means use special positioning rules (only valid for
W_LEFT with W_CLOCK and W_TOP with W_BUTTONS).

W_LEFT

integer (pixels) [>=-2 for W_CLOCK,
else >=-1]

Default{W_FRAME): 11
Default(W_CONSOLE,
W_BUTTONS): 0
Default(W_CLOCK): -2 which means
right of console if it is enabled, else
right of buttons

The x coordinate of the left edge of the window. -1 means
position using default rules. -2 for W_CLOCK means position
right of console if enabled, else right of buttons.

Valid within blocks: W_FRAME, W_CONSOLE,
W_BUTTONS, W_CLOCK

W_TOP

integer (pixels) [>=-2 for
W_BUTTONS, else >=-1]
Default(W_FRAME): 27
Default(W_CONSOLE, W_CLOCK):
0

Default(W_BUTTONS): -2 which
means below console if it is enabled,
else use default position

The y coordinate of the top edge of the window. -1 means
position using default rules. -2 for W_BUTTONS means
position below console if enabled, else use default rules.
Valid within blocks: W_FRAME, W_CONSOLE,
W_BUTTONS, W_CLOCK

Background on W_WIDTH and
W_HEIGHT

Some of the following may no longer apply. See the remarks
under W_POSITION about using W_WIDTH and W_HEIGHT
sparingly.

A value of -2 (only for the clock) means make same height as
console if it exists, else 64 pixels high.

A value of -1 means shrink in that dimension to fit contents
(except for the console for which this doesn't make sense).

A value of 0 means expand to right or down to reach to the edge
of the frame (or in the case of the frame expand to the edge of
the screen). This only works if that dimension of the frame is
specified explicitly in pixels, or if it is "extend to edge of
screen".

A positive value is the dimension in pixels, except for the
console in which case it is the dimension in characters.

GBS Software Architecture: Version 2.1 (February 3, 1997)

Page 42

Keyword Description

W_WIDTH The width of the window in pixels (or characters for

integer [>=1 for W_CONSOLE, else W_CONSOLE).

>=-1] A value of 0 means expand to the right edge of the window (or
Default(W_FRAME, W_BUTTONS, | screen in the case of W_FRAME) containing this window.
W_CLOCK): 0 A value of -1 means shrink to fit contents (not available for

Default(W_CONSOLE): 107 (Xview)
or 110 (Motif)

W_CONSOLE).
Valid within blocks: W_FRAME, W_CONSOLE,
W_BUTTONS, W_CLOCK

W_HEIGHT

integer [>=1 for W_CONSOLE, >=-2
for W_CLOCK, else >=-1]
Default(tW_FRAME, W_BUTTONS):
-1 which means fit to the window's
contents

Default(W_CONSOLE): 6
Default(W_CLOCK): -2

The height of the window in pixels (or characters for
W_CONSOLE).

A value of 0 means expand to the bottom edge of the window
containing this window.

A value of -1 means shrink to fit contents (not available for
W_CONSOLE).

A value of -2 (only available for W_CLOCK) means special
rules: same height as console if it exists, else 64 pixels high.
Valid within blocks: W_FRAME, W_CONSOLE,
W_BUTTONS, W_CLOCK

Background on W_POSITION

The executive's console, clock, and buttons subwindows are
placed inside a Motif Form widget, which makes it possible to
handle window fitting and resizing nicely. By using the
W_POSITION keyword you can specify the relative locations
of these subwindows. If you are creating all 3 windows, then
you must specify one window on an edge (e.g. "BOTTOM"),
and the other two windows in the opposite corners (e.g.
"TOP_LEFT" and "TOP_RIGHT"). If you are creating only 2
windows, one of them must specify an edge. If you are creating
only 1 window, there is nothing to do because it will fill the
frame anyway.

W_POSITION

string ["TOP", "BOTTOM", "LEFT",
"RIGHT", "TOP_LEFT",
"TOP_RIGHT", "BOTTOM_LEFT",
"BOTTOM_RIGHT"]
Default(W_CONSOLE):
"TOP_LEFT"

Default(W_CLOCK): "TOP_RIGHT"
Default(W_BUTTONS): "BOTTOM"

Be careful to select a consistent set of choices for the
subwindows you will be creating, or else you may get a very
strange window geometry. In general, you should use this
keyword to layout your subwindows, and use the W_LEFT,
W_TOP, W_HEIGHT, W_WIDTH keywords only when
necessary.

Valid within blocks: W_CONSOLE, W_BUTTONS,
W_CLOCK

W_FONT
string [non-null, < 80) chars]
Default: Use default font

The name of a font to use for the window's font. A fixed width
font is strongly recommended for the console. Use the 'xlsfonts'
command to find a list of available fonts.

Valid within Motif blocks: W_CONSOLE, W_BUTTONS
(Motif only)

W_FRAME_LABEL
string_with_blanks [non-null, <240)
chars]

Default: Window Manager will supply
frame label

Text to place in the frame label of the executive's window.
Valid within blocks: W_FRAME

W_TIME_FONT
string [non-null, <80) chars]
Default: Use default font

The name of a font to use for the time string. Use the 'xIsfonts’
commeand to find a list of available fonts.
Valid within blocks: W_CLOCK

GBS Software Architecture: Version 2.1 (February 3, 1997)

Page 43

Keyword Description
W_DATE _FONT The name of a font to use for the date string. Use the 'xIsfonts’
string [non-null, <80) chars] command to find a list of available fonts.
Default: Use default font Valid within blocks: W_CLOCK
W_GMT_FONT The name of a font to use for the GMT string. Use the "xIsfonts’
string [non-null, <80) chars] command to find a list of available fonts.
Default: Use default font Valid within blocks: W_CLOCK
W_DONT_GRAB Don't take control of the system console, just use the executive's
Default: Grab control of system console window for messages from the executive and its
console children.

Valid within blocks: W_CONSOLE

Action Sets

Action sets, which may be defined either explicitly or implicitly, define a group of actions that the
exécutive will perform, in the order they are defined, as a result of either:

a button (not associated with a pulldown menu) being selected

a menu item being selected

a process dying

an application process sending a request message to the executive (see
X_PROC_EXEC KEY above).

SECESES

An explicit definition consists of the keyword A_DEFN followed by one or more of the other A_*
keywords (each of which may appear more than once, in any order). In this case the A_DEFN keyword
defines the name (or tag) of the action set. This tag is used to refer to this action set by the P_ACTION,
M_ACTION, or MI_ACTION keywords, or in a message from an application process (see
X_PROC_EXEC _KEY above).

An implicit definition consists of one or more of the A_* keywords (except not the A_DEFN keyword)
appearing within a P_DEFN block, an M_DEFN block (only if the block defines a button with no
associated menu), or an MI_DEFN block. In this case the action set is only associated with the process,
button, or menu item where it was defined. In the explicit case, an action set can be referred to by more
than one P_ACTION, M_ACTION, or MI_ACTION keyword.

Thus the A_* keywords (except A_DEFN) may appear within an A_DEFN block, a P_DEFN block, an
M_DEFN block (only if the block defines a button with no associated menu), or an MI_DEFN block.

Actions within an action set can be performed conditionally based on the setting of flags defined in the
configuration file. Up to 30 flags may be defined in the configuration file. Each flag is referred to by a
name of up to 30 alphanumeric characters. Each flag can take on the values TRUE or FALSE. Flags can
be set to TRUE or FALSE, to the value of another flag, or to the opposite of the value of another flag.
Flags are used on IF-ELSE-ENDIF blocks to control whether or not the actions within the block are
performed. IF-ELSE-ENDIF blocks can be nested up to 10 levels deep.

There is one special action set where the A_DEFN tag is "a_frame_quit". It is executed when the user
selects "Quit" from the executive's Frame Menu. It is likely to contain the A_LOGOUT action, and perhaps
some other actions. If no such "a_frame quit" action set is defined in the configuration file, then the
executive will perform an A_LOGOUT action when "Quit" is selected from the Frame Menu.

Keyword Description

A DEFN Defines the beginning of an explicit action set definition, and
string {non-null, <30 chars] names the set with the tag.

Default: N/A

GBS Software Architecture: Version 2.1 (February 3, 1997) Page 44

Keyword Deseription

A_CONFIRM The string will be displayed in a "Yes/No" popup when this item
string_with_blanks [non-null, <240 of the action set is reached. If the user chooses "No", no more
chars] actions in the action set will be executed. If the user chooses

Default: N/A

"Yes", the remainder of the action set will be executed normally.

A MITEM_ENABLE
string [non-null, <30 chars]
Multiple: OK

Default: N/A

Tag of menu item to enable (un-grey out).

A_MITEM_DISABLE
string [non-null, <30 chars]
Multiple: OK

Default: N/A

Tag of menu item to disable (grey).

A _MITEM_REPLACE
string [non-null, <30 chars]
string [non-null, <30 chars]
Multiple: OK

Default: N/A

First string is tag of menu item to replace, second string is tag of
menu item with which to replace. For Motif, you must place
these two menu items next to each other in the configuration file
or else the replacement will probably do something you don't
want.

A _BUTTON_SHOW
string [non-null, < 30 chars]
Multiple: OK

Default: N/A

Tag of menu whose button will be made visible and selectable.

A BUTTON_GREY

string [non-null, < 30 chars]
Multiple: OK

Default: N/A

Tag of menu whose button will be made visible but unselectable
(grey).

A_BUTTON_HIDE

string [non-null, < 30 chars]
Multiple: OK

Default: N/A

Tag of menu whose button will not appear.

A PROC RUN

string [non-null, < 30 chars]
Multiple: OK

Default: N/A

Tag of process to run.

A_PROC _RUN_IF

string [non-null, < 30 chars]
Multiple: OK

Default: N/A

Same as A_PROC_RUN, except the process will be run only if it
is not currently running.

A_PROC_CMD

string [non-null, < 30 chars]
string_with_blanks
Multiple: OK

Default: N/A

First string is tag of process to send command, remainder of line
(up to comment delimiter or newline) is command to send to that
process via a pipe to its stdin. The process must have been
spawned with a pipe to its stdin (this is specified in the P_DEFN
block for the process).

A PROC CMD _IF

string [non-null, < 30 chars]
string_with_blanks
Multiple: OK

Default: N/A

Same as A_PROC_CMD, except if the receiving process isn't
running, no error will be logged and the rest of the action set will
be executed normally.

GBS Software Architecture: Version 2.1 (February 3, 1997) Page 45

Keyword

Description

A_PROC SIG

string [non-null, < 30) chars]

string ["SIGINT", "SIGTERM",
"SIGKILL", "SIGHUP", "SIGURG",
"SIGUSRL1", or "SIGUSR2"]
Multiple: OK

Default: N/A

First string is tag of process to send signal, second string is one of
the following signal keywords: SIGINT, SIGTERM, SIGKILL,
SIGHUP, SIGURG, SIGUSRI1, SIGUSR2.

A_PROC SIG_IF

string {non-null, < 30) chars]

string ["SIGINT", "SIGTERM",
"SIGKILL", "SIGHUP", "SIGURG",
"SIGUSR1", or "SIGUSR2"]
Multiple: OK

Default: N/A

Same as A_PROC_SIG, except if the receiving process isn't
running, no error will be logged and the rest of the action set will
be executed normally.

A_MESSAGE
string_with_blanks [non-null, <240
chars]

Multiple: OK

Default: N/A

String is a message which will be printed to the executive's
console window, or if a logger process is running the string will
be sent to the logger process instead.

A_SLEEP

integer (seconds) [1 <= Value <=30]
Multiple: OK

Default: N/A

The executive sleeps for the requested number of seconds. No
menu selections (or child process events) will be handled during
the sleep, but they will be handled after the sleep.

A_LOGOUT
Default: N/A

Perform the actions associated with "logging out" of the
executive. If any process is running that is not
"P_LOGOUT_OK" (see below), a message is displayed and
nothing is done (and any remaining items in the action set are not
executed). Otherwise, every running process is killed, and the
executive exits (after executing any remaining items in the action
set).

A RUN_AT INIT
Default: Don't execute action set at
executive initialization

Execute this action set at executive initialization.

A RUN_AT INIT [IF

string [non-null, <240 chars]

string [non-null, <240 chars]
optional delimiter "AND"

optional string [non-null, <240 chars]
Multiple: OK, but must be together
within the block

Default: Don't execute action set at
executive initialization

Same as A_RUN_AT_INIT, except the first string is a subsystem
keyword, and the second string is a startup option keyword.
These are compared to keywords in the file provided by
exeuser_runf path (). If this subsystem appears in the runfile
(from exeuser_runf path ()) with this startup option, then this
action set will be executed at initialization. An additional
condition may be specified, if "AND startup_mode" appears after
the startup option on the keyword line. If this is specified, then
the startup_mode keyword must also match the system startup
mode returned by exeuser_runf_mode () in order for this action
set to be executed at initialization.

A_SET FLAG

string string [non-null, < 30 chars]
Multiple: OK

Default: N/A

The first string is the name of a flag to set. The second string can
be "TRUE", "FALSE", or the name of a flag preceded by an
optional '!' character (no whitespace between the '!" and the first
letter of the flag name). The first flag will be set to TRUE,
FALSE, the value of the second flag, or the logical NOT of the
value of the second flag (if '!" is present). The same flag may be
used as the first and second flag arguments (e.g. "A_SET FLAG
Flagl !Flagl" to invert the value of Flagl).

GBS Software Architecture: Version 2.1 (February 3, 1997)

Page 46

Keyword

Description

A DO_IF

string [non-null, < 30 chars]
Multiple: OK

Default: N/A

The string is the name of a flag or the name of a flag preceded by
an optional '!" character (no whitespace between the '!" and the
first letter of the flag name). The actions in the following block
will be performed if the flag is TRUE (if '!" is present they'll be
performed if the flag is FALSE).

A DO _IF_AND

string [non-null, <30 chars]
Multiple: OK

Default: N/A

The string is the name of a flag or the name of a flag preceded by
an optional '!" character (no whitespace between the '!' and the
first letter of the flag name). The previous keyword must be an
A_DO_IF, A_DO_IF_AND, or A_DO_IF_OR. The association
of multiple A_DO_IF * keywords following an A_DO_IF
keyword is as follows (for example): A_DO_IF Flagl
A_DO_IF_AND Flag2 A_DO_IF_OR !Flag3 A_DO_IF_AND
Flag4 will be interpreted as: (((Flagl && Flag2) && !Flag3) ||
Flag4)

A_DO_IF OR

string [non-null, < 30 chars]
Multiple: OK

Default: N/A

The string is thé name of a flag or the name of a flag preceded by
an optional '!' character (no whitespace between the '!' and the
first letter of the flag name). The previous keyword must be an
A _DO_IF, A_DO_IF_AND, or A_DO_IF_OR. See
interpretation comments for A_DO_IF_AND keyword.

A_DO_ELSE
Multiple: OK
Default: N/A

Indicates beginning of "else" block associated with the previous
A DO _IF if test.

A_DO_ENDIF
Multiple: OK
Default: N/A

Indicates end of "if" or "if-else" block associated with the
previous A_DO_IF if test.

Processes

Each process, including the subexecutive process(es) if needed, is defined by a process definition block,
starting with the P_DEFN keyword. This process definition block is referred to in action sets which request
that the process be run, or that a command or signal be sent to the process. The P_* keywords must only
appear within a P_DEFN block. All A_* keywords except for A_DEFN may appear within a P_DEFN
block to define actions to perform whenever the process dies. Note that the A_ PROC_RUN keyword
(specifying the process itself) may be used to restart the process automatically whenever it dies.

Keyword

Description

P_DEFN
string [non-null, < 30 chars]
Default: N/A

Defines the beginning of a process definition block, and names
the process definition block with the tag.

P NAME

string [non-null, <20 chars]
Default: The process definition tag
from the P_DEFN line

Defines the name of the process.

P_PATHNAME

string [non-null, < 80 chars]
Default: The process name from the
P_NAME line

Defines the pathname of the executable file.

GBS Software Architecture: Version 2.1 (February 3, 1997)

Page 47

Keyword

Description

P_ARGV

string_with_blanks [non-null, <240
chars], at most 20 separate strings
Default: The process is started with
argc=1, argv[0]=P_NAME

The strings appearing on this line are used for argv[1] through
argv[n] when the process is started. Note that the same process
can be started with different arguments by creating several
P_DEFN blocks that refer to the same process but have different
values on the P ARGV line.

P_PIPES

string [one of these: "none", "stdin",
"stdout", "both"]

Default: none

This defines what pipes to create from this process to the
executive process which spawns it. If "both" or "stdout" is
specified, then stderr will be piped along with stdout. If the
process EVER reads stdin, it MUST specify a stdin pipe on the
P_PIPES keyword (either "stdin" or "both"). This can't be
checked by the executive since it has no way to know whether a
process will read stdin, so it is up to you to check this. If there is
any doubt, specify a stdin pipe just to be safe.

P_UPDOWN_FILE
string [non-null, < 80 chars]
Default: No such file

The pathname of a file that is to exist if and only if the process is
running (the executive takes care of creating it and removing it).
This provides a simple way for other processes to tell if this
process is running. The executive will not run such a process if
the updown file exists.

P_KEYSTRING
string [non-null, <10 chars]
Default: Capability disabled

This process wants to receive all messages (from any process)
that begin with this string. The entire message (including the
keystring) up to and including a newline will be sent to this
process.

P_PARENT
integer [-1 <= Value <3)]
Default: -1

Number of the executive process which will spawn this process.
A value of -1 means the main executive should spawn it. A non-
negative value is the index of the subexecutive which should
spawn it. The reason to have a subexecutive spawn a process is
that if too many processes are spawned with pipes, the main
executive may run out of file descriptors. Using a subexecutive is
just a way to get more file descriptors.

P_PRIVILEGED
Default: Process is not privileged

This process is privileged and can only be run if its process name
appears in the list of privileged processes returned by
exeuser_privs (). Furthermore, the "setuser" process cannot be
run if this process is running.

P_LOGOUT_OK
Default: Cannot logout with process
running

This process may be up at logout, and will then be killed by the
executive.

P_IAM_LOGGER
Default: This is not the logger process

This process is the logger, and will receive messages from all
other processes (and will do something reasonable with them,
like display them in a text window).

P_IAM_SETUSER
Default: This is not the setuser process

This process is the setuser process, which determines which
privileged processes are currently eligible to run. It can't be run
if any privileged process is running, and no privileged process
can run if it is running.

P_SUBEXEC

integer [0 <= Value <3]

Default: This is not a subexecutive
process

This process is a subexecutive process, and the value is its
subexecutive index number.

P_ACTION
string {non-null, <30 chars]
Default: No action set

The string is the tag (from an A_DEFN line) of an action set to be
executed whenever the process dies.

GBS Software Architecture: Version 2.1 (February 3, 1997)

Page 48

Menus and Buttons

Each menu is defined by a menu definition block, starting with the M_DEFN keyword. The executive
menus are activated from buttons in the buttons subwindow. For Xview, the button has a little down arrow
in it. The menu appears below the button when the right mouse button is pressed and held on the button.
For Motif, the menu appears below the button when the left mouse button is pressed and held on the
button. The standard Motif keyboard menu traversal capabilities are supported.

It is also possible to define standard pullright menus that are activated from a menu item in a higher level

menu.

The items in a menu are defined by MI_DEFN blocks appearing after the M_DEFN block. All MI_DEFN
menu items after an M_DEFN menu and before the next M_DEFN menu will belong to the preceding

M_DEFN menu.

It is possible to define a button that does not activate a menu but that causes an action set to be executed.
To do this, just create an M_DEFN block that is not followed by any MI_DEFN blocks. Such an
M_DEFN block may contain A_* and M_* keywords (except it may not contain the M_PULLRIGHT

keyword).
Keyword Description
M_DEFN Defines the beginning of a menu definition block, and names

string [non-null, < 30 chars]
Default: N/A

the menu with the tag.

M_BUTTON_LABEL
string_with_blanks [non-null, <40 chars]
Default: None

The label for the menu's button. For Motif, it may contain
newlines to create a multi-line label.

M_BUTTON_X
integer (pixels) [>=0]
Default: Use default positioning

The x coordinate of the left edge of the menu's button in the
executive's button panel.

M_BUTTON_Y
integer (pixels) [>=0]
Default: Use default positioning

The y coordinate of the top edge of the menu's button in the
executive's button panel.

M_DISABLED
Default: Menu (and button) are enabled

The menu (and button) are initially disabled. The button will
not be visible. Its place in the button panel will be held if
M_SAVE_SPOT is specified.

M _DISABLED IF

string [non-null, < 240 chars]

string [non-null, <240 chars]

optional delimiter "AND",

optional string [non-null, <240 chars]
Multiple: OK, but must be together within
the block

Default: Don't disable menu (and button)

The first string is a subsystem keyword, and the second string
is a startup option keyword. These are compared to keywords
in the file provided by exeuser_runf path (). If this subsystem
appears in the runfile (from exeuser_runf path ()) with this
startup option, then this menu will be disabled at initialization.
An additional condition may be specified, if "AND
startup_mode" appears after the startup option on the keyword
line. If this is specified, then the startup_mode keyword must
also match the system startup mode returned by
exeuser_runf_mode () in order for this menu to be disabled at
initialization. Its place in the button panel will be held if
M_SAVE_SPOT is specified.

M_SAVE SPOT
Default: Don't save spot for button if
menu and button are disabled

If M_DISABLED is specified, or if M_DISABLED IF is
applicable, then save a spot for the menu's button in the button
panel.

GBS Software Architecture: Version 2.1 (February 3, 1997)

Page 49

Keyword

Description

M_PULLRIGHT
Default: Menu is a pulldown from a
button

Not allowed if the menu definition block defines a button with
no associated menu. This menu is a pullright menu off of a
menu item in another menu (or several menu items, perhaps)
(see MI_PULLRIGHT). Therefore no button will be created
for it.

M_ACTION
string [non-null, < 30 chars]
Default: No action set

Only allowed if the menu definition block defines a button
with no associated menu. The string is the tag (from an
A_DEFN line) of an action set to be executed whenever the
button is selected.

Menus ltems

Each menu item is defined by a menu item definition block, startin with the MI_DEFN keyword. The
items in a menu are defined by MI_DEFN block appearing after an M_DEFN block. All MI_DEFN menu
items after an M_DEF menu and before the next M_DEFN menu will belong to the first M DEFN menu
The MI_* keywords must only appear within an MI_DEFN block. All A_keywords except for A_DEFN
may appear within an MI_DEFN block to defin actions to perform whenever the menu item is selected.

Keyword

Description

MI_DEFN
string {non-null, < 30 chars]
Default: N/A

Defines the beginning of a menu item definition block, and
names the menu item with the tag.

MI_LABEL

string_with_blanks [non-null, <40
chars]

Default: None

The label for the menu item in the menu. For Motif, it may
contain newlines to create a multi-line label.

MI_DISABLED
Default: Menu item is enabled

The menu item is initially disabled. The menu item will appear
in the menu greyed out, unless MI_DONT_DISP is specified, in
which case it will not appear in the menu at all.

MI DISABLED _[F

string [non-null, < 240 chars]

string [non-null, <240 chars]
optional delimiter "AND",

optional string [non-null, <240 chars]
Multiple: OK, but must be together
within the block

Default: Don't disable menu item

The first string is a subsystem keyword, and the second string is a
startup option keyword. These are compared to keywords in the
file provided by exeuser_runf path (). If this subsystem appears
in the runfile (from exeuser_runf path ()) with this startup
option, then this menu item will be disabled at initialization. An
additional condition may be specified, if "AND startup_mode"
appears after the startup option on the keyword line. If this is
specified, then the startup_mode keyword must also match the
system startup mode returned by exeuser_runf mode () in order
for this menu item to be disabled at initialization. The menu item
will appear in the menu greyed out, unless MI_DONT_DISP is
specified, in which case it will not appear in the menu at all.

MI_DONT _DISP
Default: Display menu item greyed
out if it is disabled

If MI_DISABLED is specified, or if MI_DISABLED IF is
applicable, then don't display the menu item at all.

MI_HIDDEN
Default: Menu item is displayable

Do not put this menu item in the menu, but create the menu item
and save it for later. It may be used later in an
A_MITEM_REPLACE action to replace another menu item.

MI _PULLRIGHT

string [non-null, < 30 chars]

Default: This menu item does not have
a pullright menu

The menu whose tag matches the string is a pullright menu off of
this menu item.

GBS Software Architecture: Version 2.1 (February 3, 1997)

Page 50

Keyword

Description

MI_PRIV_PROC

string [non-null, < 30 chars]
Default: Menu item is not associated
with any process

Tag of a privileged process. If this process is not currently
privileged to run, then this menu item will be greyed out.

MI_ACTION
string [non-null, < 30 chars]
Default: No action set

The string is the tag (from an A_DEFN line) of an action set to be
executed whenever the menu item is selected.

MI_SEPARATOR
Default: No separator appears above
the menu item

Place a separator widget above this menu item.

GBS Software Architecture: Version 2.1 (February 3, 1997) Page 51

